Practical Applications of Maxwell Bridge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MGM's Jawaharlal Nehru Engineering College
MGM’s Jawaharlal Nehru Engineering College Laboratory Manual Electrical Power Transmission & Distribution For Second Year (EEP) Students Manual made by Prof. P.A. Gulbhile AuthorJNEC,Aurangabad. FORWARD It is my great pleasure to present this laboratory manual for second year EEP engineering students for the subject of Electrical Power Transmission & Distribution. Keeping in view the vast coverage required for visualization of concepts of Electrical Power Transmission with simple language. As a student, many of you may be wondering with some of the questions in your mind regarding the subject and exactly what has been tried is to answer through this manual. Faculty members are also advised that covering these aspects in initial stage itself, will greatly relieved the minfuture as much of the load will be taken care by the enthusiasm energies of the students once they are conceptually clear. H.O.D. LABORATORY MANNUAL CONTENTS This manual is intended for the second year students of Electrical Electronics & Power engineering branch in the subject of Electrical Power Transmission & Distribution. This manual typically contains practical/Lab Sessions related layouts, sheets of different parts in electrical power transmission & distribution system as well as study of different models of transmission line, measurement of parameters of transmission line and various aspects related the subject to enhance understanding. Although, as per the syllabus, only descriptive treatment is prescribed ,we have made the efforts to cover various aspects of electrical Power Transmission & Distribution subject covering types of different transmission lines , their circuit diagrams and phasor diagrams, electrical design of overhead transmission line , electrical design of overhead transmission line, elaborative understandable concepts and conceptual visualization. -
Physics 517/617 Experiment 1 Instrumentation and Resistor Circuits
Physics 517/617 Experiment 1 Instrumentation and Resistor Circuits 1) Study the operation of the oscilloscope, multimeter, power supplies, and wave generator. For the oscilloscope you should try to understand the function of all the knobs or buttons on the front panel. Some buttons may have several functions and some of the functions will not be relevant for this class. Try to follow the examples in p. 38-42 of the instruction manual. 2) Verify Ohm’s law by measuring and then plotting voltage vs. current for a resistor. Fit your graph(s) to extract the measured resistance. Use a resistor of your choice. Repeat the measurement with a resistor of a much higher value (e.g. 10-100X) than your previous choice. Use a DC power supply for the circuit. 3) Measure the DC resistance of your multimeter (on voltage scale) using a resistor divider, which consists of two resistors in series with one of them being the multimeter resistor. How does your measurement of the multimeter’s resistance compare to the specs of the meter? Note: You do not need to measure the current in this experiment. 4) The RMS (Root Mean Square) value of a voltage (or current) is defined as t 1 2 VRMS = Ú V dt t 0 Show that VRMS = V0 / 2 for a sine wave voltage, V = V0 sinwt. Note: The multimeter only measures the RMS value of a voltage or current. † 5)† This exercise is intended to make you† familiar with some of the very useful functions of the oscilloscope. Send a 1 kHz sine wave with an amplitude of 1 V and DC offset of 1 V into the scope. -
Electrical & Electronics Measurement Laboratory Manual
DEPT. OF I&E ENGG. DR, M, C. Tripathy CET, BPUT Electrical & Electronics Measurement Laboratory Manual By Dr. Madhab Chandra Tripathy Assistant Professor DEPARTMENT OF INSTRUMENTAION AND ELECTRONICS ENGINEERING COLLEGE OF ENGINEERING AND TECHNOLOGY BHUBANESWAR-751003 PAGE 1 | EXPT - 1 ELECTRICAL &ELECTRONICS MEASUREMENT LAB DEPT. OF I&E ENGG. DR, M, C. Tripathy CET, BPUT List of Experiments PCEE7204 Electrical and Electronics Measurement Lab Select any 8 experiments from the list of 10 experiments 1. Measurement of Low Resistance by Kelvin’s Double Bridge Method. 2. Measurement of Self Inductance and Capacitance using Bridges. 3. Study of Galvanometer and Determination of Sensitivity and Galvanometer Constants. 4. Calibration of Voltmeters and Ammeters using Potentiometers. 5. Testing of Energy meters (Single phase type). 6. Measurement of Iron Loss from B-H Curve by using CRO. 7. Measurement of R, L, and C using Q-meter. 8. Measurement of Power in a single phase circuit by using CTs and PTs. 9. Measurement of Power and Power Factor in a three phase AC circuit by two-wattmeter method. 10. Study of Spectrum Analyzers. PAGE 2 | EXPT - 1 ELECTRICAL &ELECTRONICS MEASUREMENT LAB DEPT. OF I&E ENGG. DR, M, C. Tripathy CET, BPUT DO’S AND DON’TS IN THE LAB DO’S:- 1. Students should carry observation notes and records completed in all aspects. 2. Correct specifications of the equipment have to be mentioned in the circuit diagram. 3. Students should be aware of the operation of equipments. 4. Students should take care of the laboratory equipments/ Instruments. 5. After completing the connections, students should get the circuits verified by the Lab Instructor. -
Realization of AC Bridges Using Labview. Details: Explanation
Realization of AC Bridges Using LabView. Introduction: AC Bridges are used to measure the values of unknown resistance, inductance, and capacitance. Although, AC bridges are believed to be very convenient and provides accurate result of the measurement. The construction of the bridges is very simple. The bridge has four arms, one AC supply source and the balance detector. It works on the principle that the balance ratio of the impedances will give the balance condition to the circuit which is determined by the null detector. The bridges have four arms, two have non-inductive resistance and the other two have inductances with negligible resistance. Software Used: LabView LabVIEW is essentially a graphical programming language (technically it’s a development environment, and the language is “G”, but in common usage it’s a language). Instead of typing words like with C++,Python, or other text-based languages, you place and connect visual objects around your screen. Using LABVIEW the AC bridges can be Solved at an ease with proper visualization and insights. The graphical programming approach enables us to build or Solve AC bridges for different number of applications such as measuring the frequency of the audio signals, filtration of undesirable signals etc. Details: AC Bridges that have been analyzed using LabView are: (1) Maxwell’s Inductance Bridge. (2) DeSauty’s Capacitance Bridge. (3) Wheatstone’s Resistance Bridge. Explanation: Maxwell’s Inductance Bridge: A Maxwell bridge is a modification to a Wheatstone bridge used to measure an unknown inductance in terms of calibrated resistance and inductance or resistance and capacitance. Let us consider w=314, Let us consider E to be a constant (let it be 100V). -
Department of Physics Second Allied Physics Iii
KUNTHAVAI NAACHIYAR GOVERNMENT ARTS COLLEGE FOR WOMEN, THANJAVUR. DEPARTMENT OF PHYSICS SECOND ALLIED PHYSICS III 18K4CHAP3 UNIT - I 1. Dr. S. SNEGA, DEPARTMENT OF PHYSICS, THANJAVUR. UNIT - II 2. Dr. N. GEETHA, DEPARTMENT OF PHYSICS, THANJAVUR. UNIT-III 3. Ms. D.S. VASANTHI DEPARTMENT OF PHYSICS, THANJAVUR. UNIT-I: CURRENT ELECTRICITY AND NUCLEAR PHYSICS Kirchhoff’s law –Wheatstone’s bridge – Metre Bridge – Carey foster’s bridge – Measurement of specific resistance – Potentiometer – Calibration of low range voltmeter Nucleus – Nuclear Size – Charge – Mass and Spin – Shell Model – Nuclear fission and fusion – Liquid drop model – Binding energy – Mass defect KIRCHHOFF’S RULES Ohm’s law is useful only for simple circuits. For more complex circuits, Kirchhoff ’s rules can be used to find current and voltage. There are two generalized rules: i) Kirchhoff ’s current rule ii) Kirchhoff ’s voltage rule. Kirchhoff’s first rule (Current rule or Junction rule) It states that the algebraic sum of the currents at any junction of a circuit is zero. It is a statement of conservation of electric charge. All charges that enter a given junction in a circuit must leave that junction since charge cannot build up or disappear at a junction. Current entering the junction is taken as positive and current leaving the junction is taken as negative. I1 + I2 – I3 – I4 – I5 = 0 (or) I1 + I2 = I3 + I4 + I5 Kirchhoff’s Second rule (Voltage rule or Loop rule) It states that in a closed circuit the algebraic sum of the products of the current and resistance of each part of the circuit is equal to the total emf included in the circuit. -
A History of Impedance Measurements
A History of Impedance Measurements by Henry P. Hall Preface 2 Scope 2 Acknowledgements 2 Part I. The Early Experimenters 1775-1915 3 1.1 Earliest Measurements, Dc Resistance 3 1.2 Dc to Ac, Capacitance and Inductance Measurements 6 1.3 An Abundance of Bridges 10 References, Part I 14 Part II. The First Commercial Instruments 1900-1945 16 2.1 Comment: Putting it All Together 16 2.2 Early Dc Bridges 16 2.3 Other Early Dc Instruments 20 2.4 Early Ac Bridges 21 2.5 Other Early Ac Instruments 25 References Part II 26 Part III. Electronics Comes of Age 1946-1965 28 3.1 Comment: The Post-War Boom 28 3.2 General Purpose, “RLC” or “Universal” Bridges 28 3.3 Dc Bridges 30 3.4 Precision Ac Bridges: The Transformer Ratio-Arm Bridge 32 3.5 RF Bridges 37 3.6 Special Purpose Bridges 38 3,7 Impedance Meters 39 3.8 Impedance Comparators 40 3.9 Electronics in Instruments 42 References Part III 44 Part IV. The Digital Era 1966-Present 47 4.1 Comment: Measurements in the Digital Age 47 4.2 Digital Dc Meters 47 4.3 Ac Digital Meters 48 4.4 Automatic Ac Bridges 50 4.5 Computer-Bridge Systems 52 4.6 Computers in Meters and Bridges 52 4.7 Computing Impedance Meters 53 4.8 Instruments in Use Today 55 4.9 A Long Way from Ohm 57 References Part IV 59 Appendices: A. A Transformer Equivalent Circuit 60 B. LRC or Universal Bridges 61 C. Microprocessor-Base Impedance Meters 62 A HISTORY OF IMPEDANCE MEASUREMENTS PART I. -
I INVESTIGATION of METHODS for DETECTING NEEDLE INSERTION INTO BLOOD VESSELS by Ehsan Qaium BS in Mechanical Engineering, Virgi
INVESTIGATION OF METHODS FOR DETECTING NEEDLE INSERTION INTO BLOOD VESSELS by Ehsan Qaium BS in Mechanical Engineering, Virginia Tech, 2012 Submitted to the Graduate Faculty of the Swanson School of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering University of Pittsburgh 2018 i UNIVERSITY OF PITTSBURGH SWANSON SCHOOL OF ENGINEERING This thesis was presented by Ehsan Bin Qaium It was defended on April 19,2018 and approved by William Clark, PhD, Professor Jeffrey Vipperman, PhD, Professor Cameron Dezfulian, MD, Associate Professor Thesis Advisor: William Clark, PhD, Professor ii Copyright © by Ehsan Qaium 2018 iii INVESTIGATION OF METHODS FOR DETECTING NEEDLE INSERTION INTO BLOOD VESSELS Ehsan Qaium, M.S. University of Pittsburgh, 2018 Peripheral intravenous IV (pIV) placement is the mainstay for providing therapies in modern medicine. Although common, approximately 107 million difficult pIV placements each year require multiple attempts to establish IV access. Delays in establishing IV access lead to increased patient pain, delayed administration of life saving medicine, and increased cost to the institution. Current solutions involve using visual vein finders, ultrasounds and a central line if peripheral IV insertion attempts fail. The objective of this study was to investigate methods by which entry into a blood vessel could be detected, and to design and test a novel medical device that increases the likelihood of successful pIV placement on the first attempt. Two types of measurement methods (static and transient) were investigated in this study. Static measurement involved measurements performed with a multimeter and a Wheatstone bridge. The multimeter measurement was unsuccessful due to the effect of polarization. -
Basic Bridge Circuits
AN117 Dataforth Corporation Page 1 of 6 DID YOU KNOW ? Samuel Hunter Christie (1784-1865) was born in London the son of James Christie, who founded Christie's Fine Art Auctioneers. Samuel studied mathematics at Trinity College and, upon graduation, taught mathematics at the Royal Military Academy for almost 50 years. Christie made many contributions to magnetic science, such as the dependence of magnetic forces on temperature and solar ray effects on terrestrial magnetism. In 1833, he published a paper on the magneto-electric conductivity of various metals, illustrating how wire conductance varies inversely with length and directly as the square of wire diameter. Embedded in this paper was the description of a circuit used to measure and compare wire conductance. Charles Wheatstone (an English physicist and inventor) recognized the value of Christie's circuit; he was the first to put this circuit, which bears his name, to extensive use and to develop many significant applications for it. To this day (162 years later), the Wheatstone bridge remains the most sensitive and accurate method for precisely measuring resistance values. Samuel Christie never got recognition for his bridge circuit. At a royalty of five cents for every bridge circuit used, imagine what Christie’s original circuit invention would be worth today. Basic Bridge Circuits Preamble Analytical investigations throughout this document focus Bridge circuits have been in use for well over 150 years. on the R-ohm type bridge, which means all bridge To date, the bridge is still the most economical circuit resistors are “R” ohms when not exposed to the field technique for accurately measuring resistance. -
Shunt Calibration of Strain Gage Instrumentation
MICRO-MEASUREMENTS Strain Gages and Instruments Tech Note TN-514 Shunt Calibration of Strain Gage Instrumentation I. Introduction the gage. Furthermore, the electrical contacts for inserting the resistor can introduce a significant uncertainty in The need for calibration arises frequently in the use the resistance change. On the other hand, decreasing of strain gage instrumentation. Periodic calibration is the resistance of a bridge arm by shunting with a larger required, of course, to assure the accuracy and/or linearity resistor offers a simple, potentially accurate means of of the instrument itself. More often, calibration is necessary simulating the action of a strain gage. This method, known to scale the instrument sensitivity (by adjusting gage factor as shunt calibration, places no particularly severe tolerance or gain) in order that the registered output correspond requirements on the shunting resistor, and is relatively conveniently and accurately to some predetermined input. insensitive to modest variations in contact resistance. It is An example of the latter situation occurs when a strain also more versatile in application and generally simpler to gage installation is remote from the instrument, with implement. measurable signal attenuation due to leadwire resistance. In this case, calibration is used to adjust the sensitivity Because of its numerous advantages, shunt calibration is of the instrument so that it properly registers the strain the normal procedure for verifying or setting the output signal produced by the gage. Calibration is also used to set of a strain gage instrument relative to a predetermined the output of any auxiliary indicating or recording device mechanical input at the sensor. -
B.E. Electronics and Communication Engineering
B.E. Electronics and Communication Engineering THIRD TO EIGHTH SEMESTER SYLLABUS (For the students admitted from 2009-2010 and subsequently) COIMBATORE INSTITUTE OF TECHNOLOGY (Government Aided Autonomous Institution Affiliated to Anna University and Accredited by NBA) COIMBATORE – 641 014. COIMBATORE INSTITUTE OF TECHNOLOGY (Government Aided Autonomous Institution Affiliated to Anna University and Accredited by NBA Coimbatore - 641 014. B.E. ELECTRONICS AND COMMUNICATION ENGINEERING SUBJECTS OF STUDY III Semester Subject Subject L T P C Code 09EC31 Mathematics III 3 1 0 4 09EC32 Electrical Engineering 3 1 0 4 09EC33 Electron Devices and Circuits 3 0 0 3 09EC34 Measurements and Instrumentation 3 0 0 3 09EC35 Digital Circuit Design 3 1 0 4 09EC36 Networks and Transmission Lines 3 1 0 4 PRACTICALS 09EC47 Electronic Circuits Design Laboratory 0 0 3 - 09EC48 Electrical Engineering and 0 0 3 - Measurements Laboratory 09EC49 Science of Creativity and 2 - - - Professional Ethics Total Credits 22 3 IV Semester APPLICATIONS Subject Subject L T P C MIME - Peer-to-peer computing - Shared application - Video conferencing Code - Centralized and distributed conference control - Distributed virtual reality 09EC41 Mathematics IV 3 1 0 4 - Light weight session philosophy. (9) 09EC42 Analog Electronics 3 0 0 3 09EC43 Principles of Communication 3 1 0 4 Total : 45 09EC44 Signals and Systems 3 1 0 4 09EC45 Control Systems 3 1 0 4 REFERENCE BOOKS 09EC46 Principles of Environmental Science 3 0 0 3 and Engineering 1. Jon Crowcroft, Mark Handley, Ian Wakeman, “Internetworking Multimedia”, Harcourt Asia Pvt.Ltd.Singapore, 1998. PRACTICALS 09EC47 Electronic Circuits Design Laboratory 0 0 3 4 2. -
Maxwell's Inductance Bridge
Chapter 5 Electrical circuit components 1- Resistance Electrical circuit components 2- Inductance Fixed inductance Electrical circuit components 2- Inductance Variometer Variable inductance Electrical circuit components 3- Capacitance Fixed capacitance Electrical circuit components 3- Capacitance Variable capacitance Electrical circuit components If we have an unknown resistance or inductance or capacitance, how can we accurately measure it??? The unknown resistance or inductance or capacitance sometimes represent a practical element such as: • Determination of short circuit location in telephone lines or power cables. • Determination of transformer winding inductance, capacitance and resistance. • etc. DC andAC Bridge can be considered the best choice. DC Bridges 1. DC bridges are the most accurate method for measuring resistances. 2. AC bridges are most popular, convenient and accurate instruments for measurement of unknown inductance, capacitance and some other related quantities. DC Bridges Wheatstone bridge. DC Bridges Wheatstone bridge. DC Bridges Wheatstone bridge. DC Bridges Wheatstone bridge. DC Bridges Introduction to AC Bridges Alternating current bridges are most popular, convenient and accurate instruments for measurement of unknown inductance, capacitance and some other related quantities. In its simplest form, ac bridges can be thought of to be derived from the conventional dc Wheatstone bridge. Introduction to AC Bridges An ac bridge, in its basic form, consists of four arms, an alternating power supply, and a balance detector. Balance is indicated by zero response of the detector. At balance, no current flows through the detector, i.e., there is no potential difference across the detector, or in other words, the potentials at points B and C are the same. Introduction to AC Bridges An ac bridge, in its basic form, consists of four arms, an alternating power supply, and a balance detector. -
2102311 Electrical Measurement and Instruments (Part II)
2102311 Electrical Measurement and Instruments (Part II) ¾ Bridge Circuits (DC and AC) ¾ Electronic Instruments (Analog & Digital) ¾ Signal Generators ¾ Frequency and Time Interval Measurements ¾ Introduction to Transducers อาภรณ ธีรมงคลรศมั ี ตึกไฟฟา 6 ชนั้ หอง 306 Textbook: -A.D. Helfrick, and W.D. Cooper, “Modern Electronic Instrumentation and Measurement Techniques” Prentice Hall, 1994. - D.A. Bell, “Electronic Instrumentation and Measurements”, 2nd ed., Prentice Hell, 1994. ResistorResistor TypesTypes Importance parameters Value Tolerance Power rating Temperature coefficient Type Values (Ω) Power rating Tolerance (%) Temperature picture (W) coefficient (ppm/°C) Wire wound 10m~3k (power) 3~1k ±1~±10 ±30~±300 Wire wound (precision) 10m~1M 0.1~1 ±0.005~±1 ±3~±30 Carbon film 1~1M 0.1~3 ±2~±10 ±100~±200 Metal film 100m~1M 0.1~3 ±0.5~±5 ±10~±200 Metal film (precision) 10m~100k 0.1~1 ±0.05~±5 ±0.4~±10 Metal oxide film 100m~100k 1~10 ±2~±10 ±200~±500 Data: Transistor technology (10/2000) Resistor Values Color codes Resistor Values Alphanumeric 4 band color codes Color Digit Multiplier Tolerance Temperature (%) coefficient (ppm/°C) Most sig. fig. of value Silver 10-2 ±10 K Tolerance - - - Least sig. fig. Multiplier Gold 10-1 J of value ±5 Ex. Black 0 100 - - ±250 K Brown 1 101 ±1 F ±100 H Red 2 102 ±2 G ±50 G Green 3 Red Orange 3 10 - ±15 D Blue Brown - Yellow 4 104 - ±25 F R = 560 Ω ±2% Green 5 5 D E 10 ±0.5 ±20 Alphanumeric Blue 6 106 ±0.25 C ±10 C Violet 7 107 ±0.1 B ±5 B R, K, M, G, and T = 0 3 6 9 12 Gray 8 108 - ±1 A x10 , x10 , x10 , x10 , and x10 - White 9 109 - Ex.