A Hydrodynamic Wheatstone Bridge for Use As a Teaching Tool in Instrumentation Laboratory Courses

A Hydrodynamic Wheatstone Bridge for Use As a Teaching Tool in Instrumentation Laboratory Courses

2006-2363: A HYDRODYNAMIC WHEATSTONE BRIDGE FOR USE AS A TEACHING TOOL IN INSTRUMENTATION LABORATORY COURSES David Bloomquist, University of Florida Michael McVay, University of Florida Scott Wasman, University of Florida Clinton Slatton, University of Florida Page 11.56.1 Page © American Society for Engineering Education, 2006 A HYDRODYNAMIC WHEATSTONE BRIDGE FOR USE AS A TEACHING TOOL IN INSTRUMENTATION LABORATORY COURSES Abstract Undergraduate engineeringstudentsoftenfindsystemscomposedofelectricalcircuitsdifficult tograsp becausevariablessuchascurrent,voltage,resistance,capacitance,andinductanceare noteasilyvisualizedastheiranalogsinmechanicalsystems.Thus,a HydrodynamicWheatstone bridge,usingthe analogyofflowinpipes,wasdevelopedtoserve asateachingtoolinthe classroom.Aseriesoftestswere performedtosimulate¼,½,full,andshuntedbridgecircuits, wheretheincreaseordecreaseinresistanceinthe straingageisanalogoustopartially closingor opening avalveina pipenetwork.Thedifferenceinheadpotential(i.e., ∆V)wasmeasuredwith manometerslocatedbetweenthevalves.Theresultsagreewiththe¼,½,full,andshunted Wheatstone bridgecircuits.Futureenhancementsincludetheadditionofflowmeterstorelate waterflowtocurrentflow,scaledfullturnvalvestomoreaccuratelyrepresentchanging resistances,andaflexibletubesection,inplaceofavalve,toreplicateastraingageintension. Introduction In1994,CivilEngineering professorsatthe Universityof Floridadevelopedanundergraduate course,"INSTRUMENTATION FORENGINEERS",inwhichstudentsareexposedtothe fundamentalsofcircuitrythroughbasicanalysisofDCandACcircuits.Exercise problemsare routinely performedintheclassroomandgiventothestudentsforreinforcementthrough independent practice.Accompanyingthecourseisaweeklytwohourlabwhichprovidesthe studentshandsonpracticewithcivilengineeringinstrumentation:e.g.,loadcells,displacement transducers (LVDT),accelerometers,and pressuretransducers.Since the Wheatstone bridge circuitisfrequentlyusedintheseinstruments,analysisofitis paramounttothestudents’success inthecourse.Unfortunately,thistopicisonethatcausesthemost angst(perhapssecondonlyto Thevenins!),andthuswefeltitwouldbehelpfultodevelopadevicethatwouldallowthe studentstoobservewhat happenstowater pressureswhenflowingina “bridge circuit” pipe network. Hence,usingthe analogyofflowinpipes,a bridgecircuitwasdevelopedasateachingtool. Thesimilarity betweenhydrodynamics(flow,pressure,andvalve position)toelectricity(current, voltage,andresistance) providesauseful analogy.Forexample,astraingageina bridgecircuit canbemodeledwithaneedlevalveina pipenetworksothatanincreaseordecreasein resistance (viatensionor compression)inthe straingageisanalogoustoclosingoropening a valveina pipe system.Thiswill,inturn,createa ∆V(assuminga¼bridge)thatcanbe representedbyadifferenceinwaterheightsinmanometerslocatedatthe mid-pointsofthe “bridge”. Similarly,½,full,andshuntedbridgecircuitscanbe modeleddependingonthevalvesettings. Forexample,thestudentscan'balance'the bridge byadjustingthevalvesuntilthewaterheights 11.56.2 Page inthemanometersareequal.Then,byopening(lessresistance =compressionofagage)oneor morevalves,they canseetheeffectthishasonthewaterlevels.Stopping theflowattheoutlet alsoshowsthatregardlessofthevalve(s) position,thewaterlevelsareequalfornoflow conditions. Instrument Description TheHydrodynamicWheatstoneBridge (HWB)showninFigure1,wasdesignedforuse asa hands-onlabinstrument. Itutilizesa1000mL graduatedcylinder filledwithwaterandplaced adjacenttothe bridgetocreatetheappliedpressure(voltage)tothe pipenetwork(circuit). Swagelokvalvesrepresentthefourstraingagesinthelegsofthecircuit.Thevalvesare connectedby¼"ODtubingand45º brassfittings.Manometertubes,(Fig.2)arelocatedin- betweenthevalves,allowingthestudents tomeasurethewatercolumnheight orhead(voltage) andthechangescausedby openingorclosingone ormorevalves.Thevalvescanbe adjustedto a prescribedsetting,simulatingthestrainingofthegage(s) ( ∆R).Themanometertubesserveas the “voltmeter”tomeasurethedifferenceinvoltage acrossthe twolegsof the bridge. Inelectrical circuits,Wheatstone bridges are oftenusedtomeasure medium resistance values (1). Verysmallresistancesaredifficulttomeasure becauseofthermoelectric voltages generatedat the junctionsofdissimilarmetalsandthermalheatingeffects.Verylargeresistancesaredifficult tomeasureaccurately becauseofleakagecurrents.Thereisnodirectanalogtothesetwo phenomenainthehydrodynamicWheatstone bridge.Whiletheopening andclosingofvalvesis nota perfectanalogy for electricalresistors,thehydrodynamiccircuitdoesserveas anaccurate analogaslongasthevalvesarenot completelyclosedoropen. Thewaterinthehydro-bridge circuitis pumpedintothegraduatedcylinderfromareservoir locatedbelowthe circuit (Fig1).Outflow fromthecircuitischanneledbackintothereservoirto maintainaconstantflow condition.Tapwater withfooddyeservesasthefluidtohelpobserve waterheightsineachmanometer(Fig.2). Page 11.56.3 Page NEEDLE VALVE 1000mlGRADUATED CYLINDER Ho MANOMETERS HB HI HA HF 2 VALVE S 1 3 4 WATER RESERVOIR PUMP TANK Figure1.HydrodynamicWheatstone Bridge 11.56.4 Page Figure2.HydrodynamicBridgeCircuit Test Setup Afterconstruction,aseriesoftestswereconductedtoverifytheconcept.Thetestswere planned tosimulate¼,½,Full,andshuntedbridgecircuits.Table1providesthedetailsofeachtest,i.e., valvesettings. 11.56.5 Page Table1.TestSimulations Bridge Configuration ¼ ½ Full Shunt (Valve 2) Valve Settings Valve1 ½Open ¼Open ¼Open ½Open Valve2 ½Open ½Open ¾Open 9/16 Open Valve3 ¼Open ¼Open ¼Open ½Open Valve4 ½Open ½Open ¾Open ½Open Thereadingsofthemanometertubesforthedifferentvalve configurationsarethemeasured watercolumnheights.Settingallthevalvestothesameopenposition(e.g.½open)represents a balancedbridgeinwhichallthe straingagesareorientedinthesamedirectionwithequal resistances.Thisscenario produceszerovoltagedifference betweenthelegs,henceVA–V B or ∆V=0(RefertoFigure 3.below).A balancedWheatstone bridge conditioncanbedescribedby Equation1. i 1 + i 2 VI R1 R 2 + i 1 i2 VO VA VB _ i3 i4 R4 R 3 VF ∆V Figure3.Wheatstone BridgeCircuit R1 R2 = Eq.1 R4 R3 Inthe caseoftheHydrodynamic bridge,settingvalves1and4tothesame settingandvalves2 and3toadifferent,butequalsetting,alsoresultsina balancedbridge (∆V =0).Itwas 11.56.6 Page anticipatedthatmanometersH AandHBwouldbeequalandhalfof theinitialmanometer(HI) waterheight.Opening eachvalvetoadifferentsetting resultsinanunbalancedbridge( ∆V ≠0), inwhichcasemanometerheightsHA andHBwould bedifferent. Fora¼bridge,asingle gageisstrainedincompressionortension.Thestrainingincreasesor decreasesthe resistance(∆R),whichifhigherordertermsareneglected,producesadifferencein voltage,describedbyequation2. GF ∆V = ε V Eq.2 4 o where: GFisthe gagefactor, εthestrainandV o,the excitationvoltage Forthe½bridgecircuit,twogages(R 1andR 3)arestrainedincompressionortension,resulting inavoltagedifferencetwicethatofthe¼bridge.Thechangeinvoltageis describedby equation3. (GF ) ε ∆V = V Eq.3 2 o Therefore,itwas expectedthat thedifferenceinreadings between H AandH Bwouldproduce similarresults,assuming equallengthsofthetubinginthecircuit. Tosimulateashuntedcircuit,weadjustedthevalvesetting toreplicatethe parallelcombination ofR 2andashuntresistor,R S.ThehighresistanceofR ScombinedwiththeresistanceofR 2 resultsinavaluethatisslightly lessthanR 2.Therefore,valve2wasopenedslightlymorethan theothervalves.Thesettingfortheothervalves isdescribedinTable1.Asaresult,thereisa smallincreaseinV Band ∆V(i.e.,VA–V B).This wasobservedinthemanometerreadingsof HA andHB aswell. Test Results Testswere performedontheHWBtosimulate¼,½,full,andshunted bridge circuit configurations.Theresultsofeachtestare presentedinTables2-5. ¼ Bridge ThedifferenceinwaterheightsofHAandHBwas 4.1cm.ConsideringOhm'slaw(V= IR),for constantcurrent,astheresistanceincreasessodoesthevoltagedropor difference.Forthese tests,thewaterflow was maintainedataconstant,lowrate.Inthe caseoftheHWB,headloss duetotheflow path(pipefriction,fittinglosses etc.fromthesourcetothe firstmanometer)was negligible.Wemeasureda0.5cm.difference(orloss) betweenthesetwopoints.Itisimportant tonotethattheflowrate hadtobeadjustedinorderforthe bridgetoworkproperly.Thiswas done bytrialanderror andonceset,theremainderofthetestsworkedproperly.Whilewedid nothaveaflowmetersensitiveenoughtomeasure it,we plantoincorporatearotameterto monitortheflowinthenextmodel. 11.56.7 Page Table2.Resultsofthe ¼Bridge Simulation Valve Source Head (36 cm) Manometer Reading Settings Valve1 ½Open HI 35.5cm Valve2 ½Open HB 30.2cm Valve3 ¼Open HF 0cm Valve4 ½Open HA 26.1cm Figure4.ManometerHI 11.56.8 Page ½ Bridge Theexpectedresultsofthe½bridgesimulationwasadifferenceinheadbetweenH A andH B approximatelytwicethat ofthe¼bridge.Table3presentsthetestresults.Weseethat ∆Hwas closeto2xthe¼ bridge setup. Table3.Resultsof½BridgeSimulation Valve Source Head (36 cm) Manometer Reading Settings Valve1 ¼Open HI 35.7cm Valve2 ½Open HB 30.4cm Valve3 ¼Open HF 0cm Valve4 ½Open HA 22.5cm Full Bridge InTable4theresultsofthefull bridgesimulationareshown.As expected,theheightdifference wasapproximately16.9cmor4.12timesthe¼bridgedifference(asopposedto4).Again,the flowratehasasubstantialeffectontheheightsanditwasnecessarytoreduceittoaminimumin ordertomaintainthecorrect bridgeoutputeffects. Table4.ResultsoftheFullBridgeSimulation Valve Source Head (36 cm) Manometer Reading Settings Valve1 ¼Open HI 34.6cm Valve2 ¾Open HB 28.6cm Valve3 ¼Open HF 0cm Valve4 ¾Open HA 11.7cm 11.56.9 Page Shunted Bridge Table5presentstheresultsoftheshuntsimulationforvalve2.Thereadingsof HAandH B indicateasmalldifference,approximately0.4cm.Thisagreeswiththetrendwhenshunting a bridgewithalargekiloohmresistorinparallelwithoneofthestandardgages(120or350ohms).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us