Spinothalamic Tract Dorsal Column-Medial Lemniscus Pathway (SpinobulbothalamocorCal Tract)

Total Page:16

File Type:pdf, Size:1020Kb

Spinothalamic Tract Dorsal Column-Medial Lemniscus Pathway (Spinobulbothalamocor�Cal Tract) Spinal Tracts Maja Solbakken Illustra(ons by Peder Olai Skjeflo Holman What are tracts? Tract = highway Connec4ng lower and higher CNS Nerve = lane Nerve signal = car Useful definions Nucleus Ganglion Neuron Nerve Tract A collecon of A collecon of The structural A bundle of An ascending nerve cell nerve cell and func4onal fibers (sensory) or bodies inside bodies outside units of the (fascicles) using descending the CNS the CNS. nervous system electrical and (motor) pathway specialized for chemical signals for sensory or motor nerve rapid to transmit impulses, communicaon sensory and connecng lower motor and higher CNS. informaon from one body part to another. The Spinal Cord High Yields: • What sensaons the tract TRANSMITS • Where the neurons SYNAPSE • Where there are DECUSSATIONS Sensaons • Temperature Not transmiKed by the • Pressure tracts: • Pain • Visualizaon • Fine touch • Audi4on • Crude touch • Olfac4on • Propriocep4on • Gustaon • Vibraon Synapse Decussa7on = to cross over Logically Interpreng the tracts Origin →Destination • Δορσαλ χολυµν-µεδιαλ λεµνισχυσ • Σπινοτηαλαµιχ • Χορτιχοσπιναλ • Σπινοχερεβελλαρ • Χορτιχοβυλβαρ (παρτ οφ πψραµιδαλ τραχτ) Αφφερεντ (ασχενδινγ) = σενσορψ τραχτ Εφφερεντ (Δεσχενδινγ) = µοτορ τραχτ Sensory tracts 1. Dorsal Column-Medial Lemniscus pathway 2. Spinothalamic tract Dorsal Column-Medial Lemniscus Pathway (Spinobulbothalamocor7cal tract) Transmission of precise sensaon: • Fine touch • Pressure • Vibraon • Propriocep4on Did you get it? Importance of T4 § Upper body § Lower body DORSAL COLUMN MEDIUM LEMNISCUS Transmission Synapses Decussaon • Fine touch 1. order neuron: DRG Decussate as internal • Pressure 2. order neuron: Cuneate & Gracile nuclei arcuate fibers in the • Vibraon 3. order neuron: ventral posterolateral medulla, then become • Propriocep4on nucleus (thalamus) medial lemniscus Spinothalamic Tract Transmission of diffuse sensaon: • Pain • Temperature • Crude touch Did you get it? SPINOTHALAMIC TRACT Transmission Synapses Decussaon • Pain 1. order neuron: DRG Anterior white • Temperature 2. order neuron: Nucleus Proprius of dorsal commissure of spinal • Crude touch horn (Spinal cord) cord 3. order neuron: Ventral posterolateral nucleus (thalamus) Lateral white column of spinal cord = Lateral spinothalamic tract Anterior white column = Ventral spinothalamic tract Motor Tracts 1. Corcospinal (pyramidal) 2. Corcobulbar (pyramidal, ending in the brainstem) Cor7cospinal Tract (Pyramidal tract) Transmission of: • Motor func4on to contralateral limb Did you get it? CORTICOSPINAL TRACT Transmission Synapses Decussaon • Motor func4on to 1. order neuron: Giant cells of Betz in • 75 – 90% in pyramidal contralateral limb precentral gyrus (motor corteX) decussaDon (to contralateral 2. order neuron: Anterior horn cells of lateral white column) spinal cord • 10 – 25% in anterior white commissure of spinal cord SUMMARY OF TRACTS OF THE SPINAL CORD NeuroanatomyTransmission Crash CourseSynapses Decussaon 1. order Dorsal column- • Fine touch DRG Medulla (as internal neuron medial lemniscus • Pressure arcuate fibers) 2. order Gracile or Cuneate pathway • Vibraon neuron nucleus • Propriocep4on 3. order VPL (thalamus) neuron 1. order Spinothalamic tract • Pain DRG Anterior white neuron • Temperature commissure (AWC) 2. order Nucleus proprius • Crude touch neuron 3. order VPL (thalamus) neuron 1. order CorDcospinal tract • Motor func4on Giant cells of Betz Medullary pyramids, neuron AWC 2. order Anterior horn cells neuron THANK YOU FOR BEING AWESOME Anatomical Structure of the N.S. Nervous System CNS PNS Grey maer White MaSer Nerve Ganglion Commissural Associaon CorteX Nuclei Tracts Fibers Fibers .
Recommended publications
  • NS201C Anatomy 1: Sensory and Motor Systems
    NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent.
    [Show full text]
  • Facial Sensory Symptoms in Medullary Infarcts
    Arq Neuropsiquiatr 2005;63(4):946-950 FACIAL SENSORY SYMPTOMS IN MEDULLARY INFARCTS Adriana Bastos Conforto1, Fábio Iuji Yamamoto1, Cláudia da Costa Leite2, Milberto Scaff1, Suely Kazue Nagahashi Marie1 ABSTRACT - Objective: To investigate the correlation between facial sensory abnormalities and lesional topography in eight patients with lateral medullary infarcts (LMIs). Method: We reviewed eight sequen- tial cases of LMIs admitted to the Neurology Division of Hospital das Clínicas/ São Paulo University between J u l y, 2001 and August, 2002 except for one patient who had admitted in 1996 and was still followed in 2002. All patients were submitted to conventional brain MRI including axial T1-, T2-weighted and Fluid attenuated inversion-re c o v e ry (FLAIR) sequences. MRIs were evaluated blindly to clinical features to deter- mine extension of the infarct to presumed topographies of the ventral trigeminothalamic (VTT), lateral spinothalamic, spinal trigeminal tracts and spinal trigeminal nucleus. Results:S e n s o ry symptoms or signs w e re ipsilateral to the bulbar infarct in 3 patients, contralateral in 4 and bilateral in 1. In all of our cases with exclusive contralateral facial sensory symptoms, infarcts had medial extensions that included the VTT t o p o g r a p h y. In cases with exclusive ipsilateral facial sensory abnormalities, infarcts affected lateral and posterior bulbar portions, with slight or no medial extension. The only patient who presented bilateral facial symptoms had an infarct that covered both medial and lateral, in addition to the posterior re g i o n of the medulla. Conclusion: Our results show a correlation between medial extension of LMIs and pres- ence of contralateral facial sensory symptoms.
    [Show full text]
  • Spinal Cord Organization
    Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges.
    [Show full text]
  • Auditory and Vestibular Systems Objective • to Learn the Functional
    Auditory and Vestibular Systems Objective • To learn the functional organization of the auditory and vestibular systems • To understand how one can use changes in auditory function following injury to localize the site of a lesion • To begin to learn the vestibular pathways, as a prelude to studying motor pathways controlling balance in a later lab. Ch 7 Key Figs: 7-1; 7-2; 7-4; 7-5 Clinical Case #2 Hearing loss and dizziness; CC4-1 Self evaluation • Be able to identify all structures listed in key terms and describe briefly their principal functions • Use neuroanatomy on the web to test your understanding ************************************************************************************** List of media F-5 Vestibular efferent connections The first order neurons of the vestibular system are bipolar cells whose cell bodies are located in the vestibular ganglion in the internal ear (NTA Fig. 7-3). The distal processes of these cells contact the receptor hair cells located within the ampulae of the semicircular canals and the utricle and saccule. The central processes of the bipolar cells constitute the vestibular portion of the vestibulocochlear (VIIIth cranial) nerve. Most of these primary vestibular afferents enter the ipsilateral brain stem inferior to the inferior cerebellar peduncle to terminate in the vestibular nuclear complex, which is located in the medulla and caudal pons. The vestibular nuclear complex (NTA Figs, 7-2, 7-3), which lies in the floor of the fourth ventricle, contains four nuclei: 1) the superior vestibular nucleus; 2) the inferior vestibular nucleus; 3) the lateral vestibular nucleus; and 4) the medial vestibular nucleus. Vestibular nuclei give rise to secondary fibers that project to the cerebellum, certain motor cranial nerve nuclei, the reticular formation, all spinal levels, and the thalamus.
    [Show full text]
  • Medial Lemniscal and Spinal Projections to the Macaque Thalamus
    The Journal of Neuroscience, May 1994, 14(5): 2485-2502 Medial Lemniscal and Spinal Projections to the Macaque Thalamus: An Electron Microscopic Study of Differing GABAergic Circuitry Serving Thalamic Somatosensory Mechanisms Henry J. Ralston III and Diane Daly Ralston Department of Anatomy, W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, California, 94143-0452 The synaptic relationships formed by medial lemniscal (ML) jority of these spinal afferents suggests that the transmis- or spinothalamic tract (STT) axon terminals with neurons of sion of noxious information is probably not subject to GA- the somatosensory ventroposterolateral thalamic nucleus of BAergic modulation by thalamic interneurons, in contrast to the macaque monkey have been examined quantitatively by the GABAergic processing of non-noxious information car- electron microscopy. ML and STT axons were labeled by the ried by the ML afferents. The differences in the GABAergic anterograde axon transport of WGA-HRP following injection circuits of the thalamus that mediate ML and STT afferent of the tracer into the contralateral dorsal column nuclei, or information are believed to underlie differential somatosen- the dorsal horn of the spinal cord, respectively. Thalamic sory processing in the forebrain. We suggest that changes tissue was histochemically reacted for the presence of HRP. in thalamic GABAergic dendritic appendages and GABA re- Serial thin sections were stained with a gold-labeled anti- ceptors following CNS injury may play a role in the genesis body to GABA, to determine which neuronal elements ex- of some central pain states. hibited GABA immunoreactivity (GABA-ir). Serially sec- [Key words: thalamus, somatosensory, monkey, GABA, tioned thalamic structures were recorded in electron medial lemniscus, spinothalamic tract, inhibition, interneu- micrographs and reconstructed in three dimensions by com- ron, pain] puter.
    [Show full text]
  • The Nervous System: Sensory and Motor Tracts of the Spinal Cord
    15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Millions of sensory neurons are delivering information to the CNS all the time • Millions of motor neurons are causing the body to respond in a variety of ways • Sensory and motor neurons travel by different tracts within the spinal cord © 2012 Pearson Education, Inc. Sensory and Motor Tracts • Communication to and from the brain involves tracts • Ascending tracts are sensory • Deliver information to the brain • Descending tracts are motor • Deliver information to the periphery © 2012 Pearson Education, Inc. Sensory and Motor Tracts • Naming the tracts • If the tract name begins with “spino” (as in spinocerebellar), the tract is a sensory tract delivering information from the spinal cord to the cerebellum (in this case) • If the tract name ends with “spinal” (as in vestibulospinal), the tract is a motor tract that delivers information from the vestibular apparatus (in this case) to the spinal cord © 2012 Pearson Education, Inc. Sensory and Motor Tracts • There are three major sensory tracts • The posterior column tract • The spinothalamic tract • The spinocerebellar tract © 2012 Pearson Education, Inc. Sensory and Motor Tracts • The three major sensory tracts involve chains of neurons • First-order neuron • Delivers sensations to the CNS • The cell body is in the dorsal or cranial root ganglion • Second-order neuron • An interneuron with the cell body in the spinal cord or brain • Third-order neuron • Transmits information from the thalamus to the cerebral cortex © 2012 Pearson Education, Inc.
    [Show full text]
  • 05 Trigeminal System 2013.Pdf
    Dental Neuroanatomy Thursday February 7th, 2013 David A. Morton, Ph.D. 5. THE TRIGEMINAL SYSTEM Somatic Sensation of the Face and Head Objectives 1. Outline the two pathways for facial sensation from the head. 2. Contrast facial sensation from the head and somatic sensation from the body. In what ways are they similar? Different? Try drawing this on the Haines atlas diagram at the end of the lecture. 3. Diagram the corneal reflex: the afferent and efferent limbs as well as nuclei involved in the brainstem. 4. If a person does not blink, how would you determine if the problem were in the sensory (afferent) limb, motor (efferent) limb, or brainstem interconnections for the corneal reflex? 5. Explain how a single, small medullary vascular lesion could abolish pain and temperature from the face on the right side and pain and temperature from the body on the left side. What vessel is most likely occluded? Introduction – The trigeminal system for the face and oral cavity is organized in a manner similar to the spinal cord. It has the equivalent of both the DCML pathway and the ALS pathway. The two trigeminal pathways will converge in the thalamus. The most confusing thing is that one of them descends before crossing and the other crosses immediately. Peripheral Receptors and Sensation Structures served by trigeminal system. 1. Cornea 2. Mucocutaneous tissues around mouth and nostrils. 3. Oral and nasal mucosae 4. Paranasal sinuses 5. Tongue (anterior two thirds) 6. Teeth and gums 7. Dura of anterior and middle cranial fossae 8. Skin of face to the vertex except angle of jaw 9.
    [Show full text]
  • The Role of Neuromodulation Techniques for Management Of
    Research Article iMedPub Journals 2018 www.imedpub.com Journal of Anaesthesiology and Critical Care Vol.1 No.2:9 The Role of Neuromodulation Techniques Enrique Latorre Marques* for Management of Back Pain Based on Department of Anesthesiology, "Miguel Servet" Hospital, School of Medicine, Scientific Evidence University of Zaragoza, Spain *Corresponding author: Enrique Latorre Marques Abstract Background: Low back pain (LBP) is characterized for its prevalence, great [email protected] [email protected] variability, high rates of disability and costs. Chronic Low Back Pain (CLBP) has excessive rate of surgery. Evidence based studies demonstrates only few Head of Pain Clinic, Department of techniques are cost-effective and many others dangerous. CLBP may originate in Anesthesiology, "Miguel Servet" Hospital, dysfunctional nociceptive processing within the central nervous system for that School of Medicine, University of Zaragoza, Neuromodulation offers emergent possibilities. Neuromodulation is reversible, Spain. adjustable, less invasive avoiding surgery and providing functional recovery. The cost is significantly lower and Quality of life clearly better than conventional pain Tel: +976 76 53 00 therapy. The International Association for the study of pain (IASP) and the Special Interest Group on Neuromodulation (SIGN) is the leading forum for science to design therapeutic algorithms for back and neuropathic pain. Citation: Marques EL (2018) The Role Objectives: This Comprehensive Review explains concepts, epidemiology, cost, of Neuromodulation Techniques for indications and types of Neuromodulation on management of LBP and radiating Management of Back Pain Based on pain. Scientific Evidence. J Anaesthesiol Crit Care Vol.1 No.2:9 Methods: A comprehensive review of literature: Clinical Guidelines, IASP sources, SIGN policies, focused on chronic low back pain (CLBP) and Failed Back Surgery Syndrome (FBSS).
    [Show full text]
  • Spinal Cord Stimulation: the Use of Neuromodulation for Treatment of Chronic Pain
    PAIN MANAGEMENT IN REHABILITATION Spinal Cord Stimulation: The Use of Neuromodulation for Treatment of Chronic Pain ALEX HAN, BA, MD'21; ALEXIOS G. CARAYANNOPOULOS, DO, MPH, FAAPMR, FAAOE, FFSMB 23 26 EN KEYWORDS: neuromodulation, spinal cord stimulation, all neuromodulation treatments. The valuation of the SCS chronic pain, neuropathic pain marketplace was $1.3 billion in 2014.7 Spinal Cord Stimulation and Mechanisms of Action Spinal cord stimulation (SCS) involves the application of electricity to the spinal dorsal columns, which modulate INTRODUCTION pain signals relayed by ascending pain pathways to the Chronic Pain and the Role of Neuromodulation brain. Although precise mechanisms are complex and not Chronic pain, defined as pain persistent for more than 3–6 fully understood, the concept derives from the gate control months, affects 100 million adults in the United States (US) theory, first described by Melzack and Wall.8 This theory and impacts all dimensions of health-related quality of life describes the presence of a “gate” in the dorsal horn, relay- (QOL) and healthcare expenditures.1 Low back pain is the ing neuronal signals from sensory afferent fibers to brain leading cause of disability, with healthcare expenditures centers involved in pain perception. Ab fibers (myelinated) estimated to be as much as $560–$635 billion, more than the carrying non-nociceptive stimuli and C fibers (non-myelin- combined spending on heart disease and diabetes.1 Despite ated) relaying painful stimuli both synapse in the dorsal lack of consistent evidence, rates of spine surgeries have horn with the spinothalamic tract; the gate theory postu- increased, while other forms of chronic pain management, lates that stimulating the faster Ab fibers leads to closure of including narcotics, contribute to both adverse medical side nerve “gates,” blocking the transmission of pain signals by effects and the ongoing opioid epidemic.2 slower C fibers Figure( 1).
    [Show full text]
  • White Matter Anatomy: What the Radiologist Needs to Know
    White Matter Anatomy What the Radiologist Needs to Know Victor Wycoco, MBBS, FRANZCRa, Manohar Shroff, MD, DABR, FRCPCa,*, Sniya Sudhakar, MBBS, DNB, MDb, Wayne Lee, MSca KEYWORDS Diffusion tensor imaging (DTI) White matter tracts Projection fibers Association Fibers Commissural fibers KEY POINTS Diffusion tensor imaging (DTI) has emerged as an excellent tool for in vivo demonstration of white matter microstructure and has revolutionized our understanding of the same. Information on normal connectivity and relations of different white matter networks and their role in different disease conditions is still evolving. Evidence is mounting on causal relations of abnormal white matter microstructure and connectivity in a wide range of pediatric neurocognitive and white matter diseases. Hence there is a pressing need for every neuroradiologist to acquire a strong basic knowledge of white matter anatomy and to make an effort to apply this knowledge in routine reporting. INTRODUCTION (Fig. 1). However, the use of specific DTI sequences provides far more detailed and clini- DTI has allowed in vivo demonstration of axonal cally useful information. architecture and connectivity. This technique has set the stage for numerous studies on normal and abnormal connectivity and their role in devel- DIFFUSION TENSOR IMAGING: THE BASICS opmental and acquired disorders. Referencing established white matter anatomy, DTI atlases, Using appropriate magnetic field gradients, and neuroanatomical descriptions, this article diffusion-weighted sequences can be used to summarizes the major white matter anatomy and detect the motion of the water molecules to and related structures relevant to the clinical neurora- from cells. This free movement of the water mole- diologist in daily practice.
    [Show full text]
  • The Dorsal Column Nuclei Neuroanatomy Reveals a Complex Sensorimotor Integration and Distribution Hub
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2019 doi:10.20944/preprints201911.0084.v1 The Dorsal Column Nuclei Neuroanatomy Reveals A Complex Sensorimotor Integration and Distribution Hub Alastair J Loutit1,2, Richard M Vickery1, and Jason R Potas1,2 * 1School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia 2The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, 2601, Australia * Correspondence: Dr Jason R Potas [email protected] Number of words (excluding references, abstract and abbreviations): 14,490 Number of figures: 6 Number of Tables: 1 Number of supplementary figures: 0 Keywords: brainstem sensory nuclei; somatosensation; secondary afferents; posterior column Abstract The dorsal column nuclei (DCN) are organised by both somatotopy and modality, and have a diverse range of afferent inputs and projection targets. The functional organisation and connectivity of the DCN implicate them in a variety of sensorimotor functions, beyond their commonly accepted role in processing and transmitting somatosensory information to the thalamus, yet this is largely underappreciated in the literature. In this review, we examine the morphology, organisation, and connectivity of the DCN and their associated nuclei, to improve understanding of their sensorimotor functions. First, we briefly discuss the receptors, afferent fibres, and pathways involved in conveying tactile and proprioceptive information to the DCN. Next, we review the modality and somatotopic arrangements of the constituents of the dorsal column nuclei complex (DCN-complex), which includes the gracile, cuneate, external cuneate, X, and Z nuclei, and Bischoff’s nucleus. Finally, we examine and discuss the functional implications of the myriad of DCN-complex projection targets throughout the midbrain, and hindbrain, in addition to their modulatory inputs from the cortex.
    [Show full text]
  • Pain-Relieving Mechanisms in Neuromodulation 10
    Pain-Relieving Mechanisms in Neuromodulation 10 Vikram Sengupta, Sascha Qian, Ned Urbiztondo, and Nameer Haider Introduction painful disease state being treated. Although clinical evi- dence will be provided, more exhaustive summaries of the Since its inception more than 50 years ago, the forms and clinical data will be reserved for later chapters in Part VI, applications of modern neuromodulation have undergone each of which is dedicated to the clinical aspects of a particu- tremendous expansion. The International Neuromodulation lar form of neuromodulation. Society defines neuromodulation as “the alteration of nerve activity through targeted delivery of a stimulus, such as elec- trical stimulation or chemical agents, to specific neurological Background and Historical Perspective sites in the body,” most commonly to reduce pain or improve neurologic function. All forms of neuromodulation are The earliest documented use of electrical current for the reversible. Neurostimulation is the most common form of treatment of pain was around 63 AD, when the Mesopotamian neuromodulation technology used today, and it refers to the physician, Scribonius Largus, discovered that shocks deliv- use of electrical or electromagnetic stimuli upon target tis- ered by the electrical torpedo fish could relieve bodily aches sues to elicit a therapeutic response. Although the focus of and pains. In the eleventh century, the Islamic philosopher this chapter will be on neurostimulation, other non-electrical Avicenna used cranial shocks delivered by the electric catfish therapies, such as intrathecal drug delivery systems, may fall to treat epilepsy. In the 1600s, the natural philosopher, into the category of neuromodulation. William Gilbert, reported using the magnetic lodestone to On August 10, 2017, the CDC recommended that the opi- treat headaches and psychiatric illness.
    [Show full text]