15-0800-Foreman-SCS #428AE6

Total Page:16

File Type:pdf, Size:1020Kb

15-0800-Foreman-SCS #428AE6 INTERNATIONAL NEUROMODULATION SOCIETY 9TH WORLD CONGRESS SPINAL CORD MECHANISMS— VISCERAL: THE C1/C2 CONNECTION Robert D. Foreman University of Oklahoma Health Sciences Center Department of Physiology Oklahoma City, Oklahoma USA 11-15 SEPTEMBER 2009 SEOUL, SOUTH KOREA SF Hobbs, Uhtaek Oh, TJ Professor Emeritus Brennan, MJ Chandler, Hanyang University Kee Soon Kim, and RD College of Medicine Foreman. Urinary bladder and hindlimb stimuli inhibit Department of Physiology T1-T6 spinal and spino- Seoul reticular cells. Am. J. Physiol. 258: R10-R20, 1990 Uhtaek Oh, Ph.D. 1987 University of Oklahoma Health Sciences Center Department of Physiology SPINAL CORD MECHANISMS— VISCERAL: THE C1/C2 CONNECTION • Introduction—Why C1/C2 • C1/C2 Spinothalamic Tract Cells, Vagus and the Heart • C1/C2 Propriospinal Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Colonic Input • C1/C2 SCS Augmentation of Cerebral Blood Flow • Summary HEART PAIN CAN RADIATE TO THE JAW, TEETH, AND NECK UPPER CERVICAL SPINAL CORD STIMULATION (SCS) UNSTABLE ANGINA PECTORIS IN HUMANS Stimulation Parameters: intensity<paresthesias, ~200us, ~50Hz NEURAL MECHANISMS UNDERLYING ANGINA PECTORIS TO THE NECK & JAW Thalamus CL What is the explanation for VPLc CM-Pf VPM neck and jaw pain of VPMpc VPI angina pectoris??? NTS Early Clinical Observations—by Lindgren & Olivecrona, 1947 and Medulla White & Bland, 1948 effects of bilateral sympathectomy C1/C2 • “migration of pain” particularly to the neck, jaws, and temples C5/C6 • pain appears on exertion • disappears after nitroglycerin C7/C8 • pain relieved by injecting mandibular nerve with procaine Foreman T1-T5 • most likely pathway-vagus Ann. Rev. Physiol.61, 1999 SPINAL CORD MECHANISMS— VISCERAL: THE C1/C2 CONNECTION • Introduction—Why C1/C2 • C1/C2 Spinothalamic Tract Cells, Vagus and the Heart • C1/C2 Propriospinal Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Colonic Input • C1/C2 SCS Augmentation of Cerebral Blood Flow • Summary NEURAL MECHANISMS UNDERLYING ANGINA PECTORIS Does Cardiac Input Excite C1/C2 STT Cells Via the Vagus? Thalamus CL VPLc CM-Pf VPM VPMpcVPI ??? NTS Medulla Vagus C1/C2 C5/C6 C7/C8 Foreman Ann. Rev. Physiol.61, 1999 T1-T5 VAGAL INNERVATION OF THE C1/C2 SPINAL CORD Nucleus < Tractus Solitarius < < C1/C2 EFFECTS OF VAGAL STIMULATION ON ACTIVITY OF STT CELLS AT DIFFERENT SPINAL SEGMENTS Intact Ipsilateral Vagus Vagotomy 40 Thalamus CL VPLc 20 CM-Pf NTS Rate (imp/s) 0 Medulla IC Saline Algesic Algesic Heart Chemicals Chemicals C1/C2 Heart Heart C5/C6 C7/C8 T1-T5 Foreman Ann. Rev. Physiol.61, 1999 NEURAL MECHANISMS UNDERLYING ANGINA PECTORIS Cardiac Input Excites C1/C2 STT Cells Via the Vagus Thalamus CL VPLc CM-Pf VPM VPMpcVPI NTS Medulla Vagus C1/C2 C5/C6 C7/C8 Foreman Ann. Rev. Physiol.61, 1999 T1-T5 SPINAL CORD MECHANISMS— VISCERAL: THE C1/C2 CONNECTION • Introduction—Why C1/C2 • C1/C2 Spinothalamic Tract Cells, Vagus and the Heart • C1/C2 Propriospinal Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Colonic Input • C1/C2 SCS Augmentation of Cerebral Blood Flow • Summary DO NEURAL NETWORKS OF C1/C2 SEGMENTS MODULATE NOXIOUS CARDIAC INPUT? C1/C2 ?? T3/T4 Spinal integration Cardiac afferents EXPERIMENTAL SETUP RECORDINGS FROM T3/T4 SPINAL NEURONS CHEMICAL STIMULATION OF C1/C2 Spike 3 Data acquisition and Oscilloscope & analysis Audio amplifier Microelectrode A B C A, Glutamate (activates cell bodies but not axons) pledget on C1/C2 segments; B, cell recording at T3/T4 segments; C, pericardial sac EFFECTS OF C1/C2 GLUTAMATE ON T3 SPINAL NEURON RESPONSES INTRAPERICARDIAL BRADYKININ BEFORE ROSTRAL C1 TRANSECTION SpontaneousSpontaneous Activity Activity (imp/s) (imp/s) TotalTotal Response Response (imp) (imp) DurationDuration of of Response Response (s) (s) 1414 18001800 160160 1600 140 1212 1600 140 14001400 10 120120 10 1200 1200 100 8 100 8 10001000 s 80 s 80 imps 800 imps imps/s 6 800 imps/s 6 6060 600600 44 40 400400 40 2 20 2 200200 20 00 00 00 Before Glutamate After Glutamate 60 MINUTES AFTER ROSTRAL C1 TRANSECTION SpontaneousSpontaneous Activity Activity (imp/s) (imp/s) TotalTotal Response Response (imp) (imp) DurationDuration of of Response Response (s) (s) 2000 1616 2000 200200 18001800 180 1414 180 16001600 160160 1212 14001400 140140 10 10 12001200 120120 1000 s 100 88 1000 s 100 imps imps imps/s imps/s 800 80 66 800 80 600 6060 4 600 4 40 400400 40 2 20 2 200200 20 0 00 00 0 Qin et al. Auton Neurosci 114: 11-116, 2004 NEURAL HIERARCHY ORIGINATES FROM C1-C2 SEGMENTS Glutamate effects are preserved after rostral C1 spinal transections C1/C2 ! C1/C2 Propriospinal Pathway T3/T4 Cardiac afferents ! Excitation Inhibition SPINAL CORD MECHANISMS— VISCERAL: THE C1/C2 CONNECTION • Introduction—Why C1/C2 • C1/C2 Spinothalamic Tract Cells, Vagus and the Heart • C1/C2 Propriospinal Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Colonic Input • C1/C2 SCS Augmentation of Cerebral Blood Flow • Summary NEURAL HIERARCHY ORIGINATING FROM C1/C2 SEGMENTS Does C1/C2 SCS Modulate Cardiac Input onto Spinal Neurons? Spinal Cord Stimulation C1/C2 ! 90%MT, 200 us, 50 Hz ? T3/T4 Cardiac afferents ! Excitation Inhibition Spinal cord EXPERIMENTAL SETUP Spike 3 Data acquisition and Oscilloscope & analysis Audio amplifier Stimulator Microelectrode A C1/C2 T1/T2 B A, Cell recording at T3/T4 segments; B, Pericardial Sac Qin et al., Neurosci Res. 2007 May;58(1):58-66. EFFECT OF C1/C2 SCS ON T3 NEURONAL RESPONSES TO BRADYKININ A Control C1/C2 SCS on Recovery 20s 31 Keyboard 31 Keyboard 31 Keyboard 40 40 40 30 30 30 Rate Histogra Histogra Histogra Events Events Events 20 5 20 5 20 5 10 10 10 (imp/s) 0 0 0 0 5.0 5.0 5.0 2.5 2.5 2.5 volt volt volt 4 rawtrace 0.0 4 rawtrace 0.0 4 rawtrace 0.0 -2.5 -2.5 -2.5 -5.0 IB -5.0 IB -5.0 IB 100 100 100 0 0 0 mmHg mmHg mmHg 2 UBD 2 UBD 2 UBD -100 -100 -100 -200 -200 -200 5.0 5.0 5.0 2.5 2.5 2.5 pedal pedal pedal 1 volt 0.0 1 volt 0.0 1 volt 0.0 -2.5 -2.5 -2.5 -5.0 -5.0 -5.0 B 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 1380 1400 1420 1440 1460 1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 2300 2320 2340 2360 2380 2400 2420 2440 2460 2480 2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 Control s C8/T1 SCS on s Recovery s 20s 31 Keyboard 31 Keyboard 60 31 Keyboard 60 60 60 Rate 40 40 40 untitled 9 Events Histogra Events untitled 9 Events 5 20 20 20 (imp/s) 0 0 5.0 0 0 5.0 5.0 2.5 2.5 2.5 volt 4 rawtrace 0.0 rawtrace volt volt 4 rawtrace 0.0 4 0.0 -2.5 -2.5 -2.5 -5.0 IB IB -5.0 IB -5.0 200 200 200 mmHg 3 BP BP mmHg mmHg 3 BP 3 0 0 0 5.0 5.0 5.0 2.5 2.5 2.5 volt 1 pedal 0.0 volt pedal volt 1 pedal 0.0 1 0.0 -2.5 -2.5 -2.5 -5.0 -5.0 -5.0 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 80 100 120 140 160 180 200 220 240 260 280 300 320 s IB – Intrapericardials Bradykinin—Algogenic Chemical s Qin et al., Neurosci Res. 2007 May;58(1):58-66. NEURAL HIERARCHY ORGINATING FROM C1/C2 SEGMENTS Spinal Cord Stimulation C1/C2 ! 90%MT, 200 us, 50 Hz SCS depends the dorsal columns but not the propriospinal pathway T3/T4 Cardiac afferents ! Excitation Inhibition Spinal cord SPINAL CORD MECHANISMS— VISCERAL: THE C1/C2 CONNECTION • Introduction—Why C1/C2 • C1/C2 Spinothalamic Tract Cells, Vagus and the Heart • C1/C2 Propriospinal Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Nociceptive Cardiac Input • C1/C2 SCS Modulation of Colonic Input • C1/C2 SCS Augmentation of Cerebral Blood Flow • Summary NEURAL HIERARCHY ORIGINATING FROM C1/C2 SEGMENTS: DOES C1/C2 SCS MODULATE L6-S2 NEURONAL RESPONSES TO COLONIC DISTENSION? Spinal Cord Stimulation C1/C2 ! 90%MT, 200 us, 50 Hz L6-S2 Spinal cord ! Excitation Inhibition EXPERIMENTAL SETUP Oscilloscope Pen Discriminator writer Stimulator Microelectrode A B C2 L2 C A, SCS on C1/C2 or L1/L2 segments; B, cell recording at L6-S2 segments; C, colorectal distention NEURAL HIERARCHY ORIGINATING FROM C1/C2 SEGMENTS Spinal Cord Stimulation C1/C2 ! 90%MT, 200 us, 50 Hz S1 Spinal Neuron Responses to SCS 31 Keyboard 31 Keyboard 31 Keyboard 31 Keyboard 20 20 20 20 20 15 Rate15 15 15 histogram Events histogram histogram Events Events Events 5 10 5 histogram 10 10 5 10 5 10 5 (imp/s)5 5 5 0 0 0 0 10 10 0 10 10 5 5 5 5 raw cell volts raw cell raw cell volts volts volts 4 4 raw cell CRD 60 4 60 4 60 60 0 0 0 0 (mmHg) -5 -5 -5 -5 5.0 5.0 5.0 5.0 2.5 2.5 2.5 SCS on C1-C2 2.5 emg volts emg emg volts volts volts 3 0.0 3 emg 0.0 3 0.0 3 0.0 -2.5 -2.5 -2.5 -2.5 -5.0 -5.0 -5.0 -5.0 300 300 300 300 200 200 200 200 torr bp bp bp torr torr bp 2 100 2 torr 100 2 100 2 100 0 0 0 0 -100 -100 -100 -100 5.0 5.0 5.0 5.0 2.5 2.5 2.5 2.5 marker volts marker marker volts volts marker 1 0.0 1 volts 0.0 1 0.0 1 0.0 -2.5 -2.5 -2.5 -2.5 -5.0 -5.0 -5.0 -5.0 1380 1400 14201660 14401680 14601700 14801720 15001740 15201760 15401780 15601800 15801820218016001840220016201860222016401880224016601900226016801920228017001940230017201960232021801740198023402200200023602220202023802240204024002260 24202280 24402300 24602320 24802340 25002360 25202380 25402400 25602420 2440 2460 2480 2500 2520 2540 2560 L6-S2 s s s s Spinal cord ! Excitation Inhibition NEURAL HIERARCHY ORIGININATING FROM L5-S2 SEGMENTS S1 Spinal Neuron Responses to SCS 31 Keyboard 31
Recommended publications
  • NS201C Anatomy 1: Sensory and Motor Systems
    NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent.
    [Show full text]
  • Facial Sensory Symptoms in Medullary Infarcts
    Arq Neuropsiquiatr 2005;63(4):946-950 FACIAL SENSORY SYMPTOMS IN MEDULLARY INFARCTS Adriana Bastos Conforto1, Fábio Iuji Yamamoto1, Cláudia da Costa Leite2, Milberto Scaff1, Suely Kazue Nagahashi Marie1 ABSTRACT - Objective: To investigate the correlation between facial sensory abnormalities and lesional topography in eight patients with lateral medullary infarcts (LMIs). Method: We reviewed eight sequen- tial cases of LMIs admitted to the Neurology Division of Hospital das Clínicas/ São Paulo University between J u l y, 2001 and August, 2002 except for one patient who had admitted in 1996 and was still followed in 2002. All patients were submitted to conventional brain MRI including axial T1-, T2-weighted and Fluid attenuated inversion-re c o v e ry (FLAIR) sequences. MRIs were evaluated blindly to clinical features to deter- mine extension of the infarct to presumed topographies of the ventral trigeminothalamic (VTT), lateral spinothalamic, spinal trigeminal tracts and spinal trigeminal nucleus. Results:S e n s o ry symptoms or signs w e re ipsilateral to the bulbar infarct in 3 patients, contralateral in 4 and bilateral in 1. In all of our cases with exclusive contralateral facial sensory symptoms, infarcts had medial extensions that included the VTT t o p o g r a p h y. In cases with exclusive ipsilateral facial sensory abnormalities, infarcts affected lateral and posterior bulbar portions, with slight or no medial extension. The only patient who presented bilateral facial symptoms had an infarct that covered both medial and lateral, in addition to the posterior re g i o n of the medulla. Conclusion: Our results show a correlation between medial extension of LMIs and pres- ence of contralateral facial sensory symptoms.
    [Show full text]
  • Modulation of Interhemispheric Inhibition Between Primary Motor Cortices Induced by Manual Motor Imitation: a Transcranial Magnetic Stimulation Study
    brain sciences Article Modulation of Interhemispheric Inhibition between Primary Motor Cortices Induced by Manual Motor Imitation: A Transcranial Magnetic Stimulation Study Dongting Tian 1,*, Shin-ichi Izumi 1,2 and Eizaburo Suzuki 1,3 1 Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; [email protected] (S.-i.I.); [email protected] (E.S.) 2 Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan 3 Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata 990-2212, Japan * Correspondence: [email protected] Abstract: Imitation has been proven effective in motor development and neurorehabilitation. How- ever, the relationship between imitation and interhemispheric inhibition (IHI) remains unclear. Transcranial magnetic stimulation (TMS) can be used to investigate IHI. In this study, the modifica- tion effects of IHI resulting from mirror neuron system (MNS) activation during different imitations are addressed. We measured IHI between homologous primary motor cortex (M1) by analyzing the ipsilateral silent period (iSP) evoked by single-pulse focal TMS during imitation and analyzed the respective IHI modulation during and after different patterns of imitation. Our main results showed that throughout anatomical imitation, significant time-course changes of iSP duration through the Citation: Tian, D.; Izumi, S.-i.; experiment were observed in both directions. iSP duration declined from the pre-imitation time Suzuki, E. Modulation of Interhemispheric Inhibition between point to the post-imitation time point and did not return to baseline after 30 min rest.
    [Show full text]
  • Spinal Cord Organization
    Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges.
    [Show full text]
  • Systematic Examination of Low-Intensity Ultrasound Parameters
    TOOLS AND RESOURCES Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior Anton Fomenko1†*, Kai-Hsiang Stanley Chen1,2†, Jean-Franc¸ois Nankoo1, James Saravanamuttu1, Yanqiu Wang1, Mazen El-Baba1, Xue Xia3, Shakthi Sanjana Seerala4, Kullervo Hynynen4, Andres M Lozano1,5*, Robert Chen1,3* 1Krembil Research Institute, University Health Network, Toronto, Canada; 2Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan; 3Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; 4Sunnybrook Research Institute, Toronto, Canada; 5Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada Abstract Low-intensity transcranial ultrasound (TUS) can non-invasively modulate human neural activity. We investigated how different fundamental sonication parameters influence the effects of TUS on the motor cortex (M1) of 16 healthy subjects by probing cortico-cortical excitability and behavior. A low-intensity 500 kHz TUS transducer was coupled to a transcranial magnetic stimulation (TMS) coil. TMS was delivered 10 ms before the end of TUS to the left M1 hotspot of the first dorsal interosseous muscle. Varying acoustic parameters (pulse repetition frequency, duty *For correspondence: cycle, and sonication duration) on motor-evoked potential amplitude were examined. Paired-pulse [email protected] measures of cortical inhibition and facilitation, and performance on a visuomotor task was also (AF); assessed. TUS safely suppressed TMS-elicited motor cortical activity, with longer sonication [email protected] (AML); durations and shorter duty cycles when delivered in a blocked paradigm. TUS increased GABA - [email protected] (RC) A mediated short-interval intracortical inhibition and decreased reaction time on visuomotor task but † These authors contributed not when controlled with TUS at near-somatosensory threshold intensity.
    [Show full text]
  • Development and Prospect of Neuromodulation Technology
    Development and Prospect of Neuromodulation Technology Hsin-Yi (Happy) Lai, PI Professor 赖欣怡, 教授 Why Study the Brain? SpiNNaker Chip 80-90 billion Neurons Robot Brain Disease Understanding Human Mind and Brain Function Neuroscience-inspired Artificial Intelligence New Diagnosis and Treatments for Brain Disease Brain Machine Interface Brain Stimulation chiefscientist.gov.au; www.swisswuff.ch; queuesquared.com; cannabisoilresearch.com; Johns Hopkins Applied Physics Lab Sensations, Memory, Emotion… Vision http://faculty.pasadena.edu/ How to Study the Brain? Brain Machine Interface Recording Neuromodulation Technology Brain Research Technology Medical Science Diagnosis and Therapy Neuromodulation Technology Electrical (DBS) Chemical Thermal Cryogenic Optical Magnetic (TMS) Mechanical (FUS) Invasive Neuromodulation Optical stimulation Microinjection Deep brain stimulation (DBS) http://www.tritechresearch.com/IMS-3.html Reversible cooling • targeting accuracy • brain tissue damage, adverse side effects http:// www.the-scientist.com • Any new applications for other brain diseases and disorder? Ex: Epilepsy, Dysmyotonia, Obsessive, Depression, etc. Sumner et al., Nat Neuroscience, 2008 https://www.youtube.com/watch?v=7Mmsah0v9Qc Noninvasive Neuromodulation Transcranial magnetic Transcranial direct stimulation (TMS) current stimulation (tDCS) http://www.drchugh.com/rtms.html 1–2 mA http://davidileitman.com/time-causality-and-perception-tcp/ neurology and mental health cognitive functions Limitation of spatial resolution !!! Noninvasive Neuromodulation Temporal interference Focused ultrasound (FUS) stimulation (TIS) Using TMS or TIS to directly stimulate deep brain structures requires stronger stimulation of overlying (eg, cortical) areas, which may result in unanticipated adverse effects and encroach on safety guidelines. Alan Urban, et al, 2015 Nature Meth Dmochowski et al., 2017 Cell • high spatial selectivity TIS in humans is a challenging • penetration depth and promising technique.
    [Show full text]
  • Challenges in Neuromodulation Therapy
    Challenges in Neuromodulation Therapy Milton M. Morris, PhD, MBA Principal MEH BioMedical, LLC February 25, 2015 Neuromodulation offers multiple indication therapy EMERGING Deep Brain Stim: Obesity, Stroke Recovery, Depression FDA APPROVED Cortical Stim: Epilepsy Deep Brain Stim: Peripheral Nerve Stim: Migraines, Extremity Pain Parkinson’s Disease, Dystonia, Essential Tremor, Obsessive Compulsive Disorder Carotid Artery, Sinus Stim: Hypertension Vagus Nerve Stimulation: Hypoglossal & Phrenic Nerve Stim: Sleep Apnea Depression, Epilepsy Spinal Cord: Spinal Cord Stim: Angina Pain Gastric Stim: Obesity Sacral Nerve Stim: Sacral & Pudendal Nerve Stim: Urinary Incontinence, Interstitial Cystitis, Sexual Function, Pelvic Pain Fecal Incontinence Percutaneous Tibial Nerve Stim: FUTURE Urinary Incontinence Deep Brain Stim: Alzheimer’s, Anxiety, Bulimia, Tinnitus, Traumatic Brain Injury, Tourette’s, Sleep Disorders, Autism, Bipolar Vagus Nerve Stim: Alzheimer’s, Anxiety, Obesity, Bulimia, Tinnitus, Obsessive Compulsive Disorder, Heart Failure Spinal Cord Stim: Asthma Gastric Stim: Bulimia, Interstitial Cystitis Status of Neuromodulation Therapy(ies) • FDA: Approved Epilepsy by the numbers • CMS: Favorable Coverage Recommendation Epilepsy 9 <3% chance of seizure th 4 most common MILLION freedom after 2 AED neurological disease after People living with epilepsy in migraine, stroke and failures United States, Europe, Alzheimer's disease and Japan Direct and indirect costs 400,000 of 25-40X People indicated for Mortality rate vs. VNS Therapy® $13.5B general population in US per year in US alone Source: CDC, WHO, IOC report on Epilepsy Status of Neuromodulation Therapy(ies) • FDA: Approved (VNS) Depression by the numbers • CMS: Non-Favorable Coverage Recommendation Depression 18 350 Major depressive MILLION Million disorder (MDD) is the People affected at any People worldwide second leading cause of one time in United affected by depressive disability worldwide* States illness 4 Direct and indirect costs of >39,000 Million > $43B Suicide deaths per year approx.
    [Show full text]
  • The Nervous System: Sensory and Motor Tracts of the Spinal Cord
    15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Millions of sensory neurons are delivering information to the CNS all the time • Millions of motor neurons are causing the body to respond in a variety of ways • Sensory and motor neurons travel by different tracts within the spinal cord © 2012 Pearson Education, Inc. Sensory and Motor Tracts • Communication to and from the brain involves tracts • Ascending tracts are sensory • Deliver information to the brain • Descending tracts are motor • Deliver information to the periphery © 2012 Pearson Education, Inc. Sensory and Motor Tracts • Naming the tracts • If the tract name begins with “spino” (as in spinocerebellar), the tract is a sensory tract delivering information from the spinal cord to the cerebellum (in this case) • If the tract name ends with “spinal” (as in vestibulospinal), the tract is a motor tract that delivers information from the vestibular apparatus (in this case) to the spinal cord © 2012 Pearson Education, Inc. Sensory and Motor Tracts • There are three major sensory tracts • The posterior column tract • The spinothalamic tract • The spinocerebellar tract © 2012 Pearson Education, Inc. Sensory and Motor Tracts • The three major sensory tracts involve chains of neurons • First-order neuron • Delivers sensations to the CNS • The cell body is in the dorsal or cranial root ganglion • Second-order neuron • An interneuron with the cell body in the spinal cord or brain • Third-order neuron • Transmits information from the thalamus to the cerebral cortex © 2012 Pearson Education, Inc.
    [Show full text]
  • 10 Things to Know About Neuromodulation. Minimally Invasive Procedures to Reduce Or Alleviate Pain
    NORTH AMERICAN NEUROMODULATION SOCIETY 4700 W. Lake Avenue Glenview, IL 60025 www.neuromodulation.org Rubenstein Public Relations Contact: Eve McGrath Tel: 212-843-8490 Email: [email protected] FOR IMMEDIATE RELEASE 10 Things to Know About Neuromodulation Minimally Invasive Procedures to Reduce or Alleviate Pain NEW YORK – February 24, 2010 – Robert Foreman, Ph.D., president of the North American Neuromodulation Society (NANS), stated, “Neuromodulation is among the most rapidly growing fields in medicine today. It can help to relieve chronic back pain, pain from cancer and other nerve injuries, pain from Complex Regional Pain Syndrome (CRPS) and Reflex Sympathetic Dystrophy (RSD) greatly improving the quality of life for patients.” Neuromodulation encompasses the application of targeted electrical, chemical and biological technologies to the nervous system in order to improve function and quality of life. The appropriate therapy (low level electrical pulses or micro-doses of medicine) are targeted to nerves along the spinal cord to block pain signals to the brain According to Joshua Prager, MD, MS, former president of NANS, “Neuromodulation can give people their lives back. Patients have gone from wheelchairs back to the tennis court, back to the sidelines of their children’s soccer games, back to their jobs. There are few treatments that can improve the activity level and the psychological outlook of a patient in pain like neuromodulation techniques.” NANS has compiled ten things everyone should know about neuromodulation: 1. Neuromodulation alleviates or lessens pain without putting patients into a “drug fog.” By relieving pain with neuro-stimulation or a drug-delivery system, that provides micro- doses of medicine, the patient can avoid some side effects, including excessive sedation or clouding of thoughts.
    [Show full text]
  • The Role of Neuromodulation Techniques for Management Of
    Research Article iMedPub Journals 2018 www.imedpub.com Journal of Anaesthesiology and Critical Care Vol.1 No.2:9 The Role of Neuromodulation Techniques Enrique Latorre Marques* for Management of Back Pain Based on Department of Anesthesiology, "Miguel Servet" Hospital, School of Medicine, Scientific Evidence University of Zaragoza, Spain *Corresponding author: Enrique Latorre Marques Abstract Background: Low back pain (LBP) is characterized for its prevalence, great [email protected] [email protected] variability, high rates of disability and costs. Chronic Low Back Pain (CLBP) has excessive rate of surgery. Evidence based studies demonstrates only few Head of Pain Clinic, Department of techniques are cost-effective and many others dangerous. CLBP may originate in Anesthesiology, "Miguel Servet" Hospital, dysfunctional nociceptive processing within the central nervous system for that School of Medicine, University of Zaragoza, Neuromodulation offers emergent possibilities. Neuromodulation is reversible, Spain. adjustable, less invasive avoiding surgery and providing functional recovery. The cost is significantly lower and Quality of life clearly better than conventional pain Tel: +976 76 53 00 therapy. The International Association for the study of pain (IASP) and the Special Interest Group on Neuromodulation (SIGN) is the leading forum for science to design therapeutic algorithms for back and neuropathic pain. Citation: Marques EL (2018) The Role Objectives: This Comprehensive Review explains concepts, epidemiology, cost, of Neuromodulation Techniques for indications and types of Neuromodulation on management of LBP and radiating Management of Back Pain Based on pain. Scientific Evidence. J Anaesthesiol Crit Care Vol.1 No.2:9 Methods: A comprehensive review of literature: Clinical Guidelines, IASP sources, SIGN policies, focused on chronic low back pain (CLBP) and Failed Back Surgery Syndrome (FBSS).
    [Show full text]
  • Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation
    Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation Presenters: Cecília N. Prudente, PT, MS, PhD1 Bernadette T. Gillick, PT, MS, PhD1 Colum MacKinnon, PhD2 Teresa J.Kimberley, PT, PhD1 1Dept. of Rehabilitation Medicine 2Dept. of Neurology Conflicts of interest TJK: consulting income from MicroTransponder Others: Nothing to declare Learning objectives 1. Be familiar with forms of brain stimulation 2. Be able to identify safety and feasibility of each technique 3. Understand the purposes of using the parameters of brain stimulation 4. Translate brain stimulation research into clinical implications Harnessing neuroplasticity to improve motor function 1. Neuromodulation tools 2. Down-regulation 3. Up-regulation 4. Hijacking neural firing patterns 5. Where are we now, where are we going, and how do we get there? 6. Discussion Harnessing neuroplasticity to improve motor function 1. Neuromodulation tools 2. Down-regulation 3. Up-regulation 4. Hijacking neural firing patterns 5. Where are we now, where are we going, and how do we get there? 6. Discussion What is neuromodulation? http://blog.cambridgeconsultants.com/medical-technology/wp- content/uploads/2014/05/Neuromodulation.jpg Publications per year 1200 1000 800 Neuromodulation 600 Neuromodulation & rehabilitation 400 200 0 2016 1978 1988 1998 2008 Source: Pubmed How to neuromodulate? Healthy state Neuroplasticity Injury Medications Neuromodulation Rehabilitation Neuromodulation tools Why neuromodulate? E I Healthy state : greater excitability : greater inhibition
    [Show full text]
  • A Scoping Review of Neuromodulation Techniques in Neurodegenerative Diseases: a Useful Tool for Clinical Practice?
    medicina Review A Scoping Review of Neuromodulation Techniques in Neurodegenerative Diseases: A Useful Tool for Clinical Practice? Fabio Marson 1,2 , Stefano Lasaponara 3,4 and Marco Cavallo 5,6,* 1 Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, 06081 Assisi, Italy; [email protected] 2 Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy 3 Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; [email protected] 4 Department of Human Sciences, LUMSA University, 00193 Rome, Italy 5 Faculty of Psychology, eCampus University, 22060 Novedrate, Italy 6 Clinical Psychology Service, Saint George Foundation, 12030 Cavallermaggiore, Italy * Correspondence: [email protected]; Tel.: +39-347-830-6430 Abstract: Background and Objectives: Neurodegenerative diseases that typically affect the elderly such as Alzheimer’s disease, Parkinson’s disease and frontotemporal dementia are typically char- acterised by significant cognitive impairment that worsens significantly over time. To date, viable pharmacological options for the cognitive symptoms in these clinical conditions are lacking. In recent years, various studies have employed neuromodulation techniques to try and contrast patients’ decay. Materials and Methods: We conducted an in-depth literature review of the state-of-the-art of the contribution of these techniques across these neurodegenerative diseases. Results: The present review reports that neuromodulation techniques targeting cognitive impairment do not allow to Citation: Marson, F.; Lasaponara, S.; Cavallo, M. A Scoping Review of draw yet any definitive conclusion about their clinical efficacy although preliminary evidence is very Neuromodulation Techniques in encouraging. Conclusions: Further and more robust studies should evaluate the potentialities and Neurodegenerative Diseases: A limitations of the application of these promising therapeutic tools to neurodegenerative diseases.
    [Show full text]