Cytotaxonomy of the Andropogoneae II. Subtribes Ischaeminae, Rottboelliinae, and the Maydeae

Total Page:16

File Type:pdf, Size:1020Kb

Cytotaxonomy of the Andropogoneae II. Subtribes Ischaeminae, Rottboelliinae, and the Maydeae 160 Cytologia 22 Cytotaxonomy of the Andropogoneae II. Subtribes Ischaeminae, Rottboelliinae, and the Maydeae Robert P. Celarier Department of Botany and Plant Pathology, Oklahoma A. & M. College, Stillwater, Oklahoma, U. S. A. Received March 5, 1957 Introductory remarks, key to the subtribes, materials and methods, and the review of the subtribes Dinzeriinae and Saccharinae have been treated previously (Celarier, 1956b). Consequently, this report shall commence im mediately with the subtribes to be considered in this study. Subtribe III. Ischaenzinae Hack. Although the stout fused condition of the joints and pedicels marks this subtribe as rather more advanced than the Saccharinae, it almost always has two flowers, awned fertile spikelets and must be considered as rather primitive on morphological grounds. Pilger (1940) divides the subtribe into two groups, the Ischaenzininae and the Apludininae. In general this follows the plan of Stapf (1919), Bews (1929) and Keng (1939) and there is fair agreement among these workers concerning the materials considered in each division, although there are some differences regarding the status of various entries. The major exception is Keng's treatment in which Sehirna and Apluda are placed in the Euandro pogoneae and Arthraxon is included in the Ischaenzinae. Although Sehima and Apluda have been retained in the Ischaenzinae in this study, it has seemed advisable to follow Keng's example in regard to Arthraxon. It ap pears definitely to be related to Thelepogon in regard to the tuberculate or muricate lower glumes of the sessile spikelets and the cordate lanceolate leaves. Key to the genera of the Ischaeminae AA. Racemes several to many noded, not enclosed in a sheath (Ischaemi ninae). A. Racemes 3-many, digitate or nearly so. I. Rachis joints and pedicels more or less thickened, first glume of the sessile spikelet without tubercules or muricate, leaves not cordate..................................Ischaemum subgen. Coelischaemum II. Rachis joints and pedicels slender, first glume of sessile spikelet tuberculata or muricate, leaves lanceolate cordate. 1. Sessile spikelets two flowered, lemma awned from between the sinus...........................Thelepogon 1957 Cytotaxonomy of the Andropogoneae II 161 2. Sessile spikelets one flowered , lemma awned from the back or at base ......................... ..Arthraxon B. Racemes binate, rachis joints and pedicels triangular .................................... ......Ischaenzum Subgen. Euischaemum C. Racemes usually solitary. I. Pedicellate spikelets more or less reduced, glumes without wings. 1. Pedicillate spikelet neuter but almost as large as sessile. a. Joints and pedicels much thickened .. Ischaenzum Subgen. Digastriunz b. Joints and pedicels almost linear .....Sehima 2. Pedicellate spikelets reduced to the lower glume , much smaller than the sessile........ ..............Kerriochloa II. Pedicellate spikelets male . 1. Upper glume of both spikelets with wing-like crest .................................... Andropterum 2. Glumes not winged. .................Pogonachne BB. Racemes with one node, three heteromorphic reduced spikelets contain ed in a sheath (Apludininae).......... ........Apluda Of the eight genera included in this subtribe only two, Ischaernunz and Arthraxon, have more than a few known species. With the exception of fschaenzum, which has 3-4 species in America, all are restricted to the Eastern Hemisphere with the greatest number of genera and species in South east Asia. Only four genera are known cytologically. Ischaemum L. This is an extremely large and complex genus with well over fifty species and distributed throughout the tropics of the world. Two subgenera, Euischaemum and Coelischaemum, are recognized by both Keng (1939) and Pilger (1940) and it appears entirely possible from Hubbard's report (1935) that a third group Digastriunz may be distinct. Several sections have been recognized and described in the subgenus Euischaemum (Pilger 1940). Subgenus Coelischaemum I. brachyatherum Fenzl. was available for this study from a single collection made in Southern Rhodesia. It was found to have twenty somatic chromosomes with ten bivalents at metaphase I (Fig. 1) and completely re gular meiotic behavior. I. glaucostachyum Stapf was studied by Gould (1956) from two South African collection. Both had 2n=20 but no report of the meiotic behavior was given. Subgenus Euischaemum I. rugosum Salisb. from a collection in Assam, India, was found to be 2n=18 with nine bivalents at diakinesis (Fig. 2) and metaphase I. It was completely regular throughout its meiotic divisions. A second accession of Cytologia 22, 1957 11 162 R. P. Celarier Cytologia 22 this species came from a collection near Sao Paulo, Brazil. This was also found to have 18 somatic chromosomes with nine bivalents at metaphase I (Fig. 3) and regular meiotic behavior. I. tinzorense Kunth. was first studied by Bremer (1925) and was reported to have twenty somatic chromosomes. However, in this study, from materials collected at Taichung, Formosa, it was seen to be 2n=36. At diakinesis and metaphase I the normal condition was 18 bivalents (Fig. 4) but occasion ally two univalents were present. At anaphase and telophase I chromosome behavior was completely regular with 18: 18 distribution. I. ciliare Retz was studied from material collected at Turrialba, Costa Rica. This material yielded extremely poor preparations at diakinesis and metaphase I and it was only after considerable effort that fifteen cells were analyzed. In all of these the 2n number appeared to be 54, but only six cells had 27 bivalents. More frequently 2-4 univalents were seen (Fig. 5) and in one cell a quadrivalent was observed. I. diplopogon Hook. from the Aravalli Mts. of India was found to have a somatic number of forty. The meiotic divisions were completely regular throughout and there were consistently twenty bivalents at diakinesis (Fig. 6) and metaphase I (Fig. 7). I. arcuaturn Stapf from South Africa was reported by de Wet (1954) to have a somatic complement of twenty chromosomes. A more recent study (de Wet and Anderson 1956) has recorded 2n=50 indicating a polyploid series. No meiotic studies were made for either accession. I. guianense Kunth. was studied by Krishnaswamy (1941) and was found to be 2n=40. I. crassipes Thell. var. typicum was found by Moriya and Kondo (1950) to have 56 somatic chromosomes with 28 bivalents at metaphase I. However, an accession of this species, collected for this study by A. Moriya from Yakasidi, Japan, appears to be 2n=60. Although the chromosomes stained distinctly, their behavior was essentially regular, and their size was not ex ceedingly small, it was nevertheless difficult to determine the number with certainty. This seems to be principally due to the clumping of the chromo somes, especially at metaphase I, and, to a lesser extent, was the result of quadrivalent formation (Figs. 8, 9, 10). Because of this difficulty 75 cells were analyzed at diakinesis and meta phase I. Of these cells, four were found that had 28 bivalents and one quadrivalent, and 15 others were probably of this constitution (Fig. 8). Fifteen cells had 28 configurations (Fig. 9) and it appears likely that most of these were cases of two groups of two cells lying together. The remain ing 41 cells all seemed definitely to have 30 bivalents. Anaphase and telophase I were essentially regular, but occasionally two chromosome pairs appeared to be late in separating, and in one cell a bridge, without a fragment, was seen. It seems probable that these irregularities 1957 Cytotaxonomy of the Andropogoneae II 163 Figs. 1-12. Chromosome behavior in the Ischaeminae. 1350•~. 1, metaphase I in Ischaemum brachyatherum with ten bivalents. 2, diakinesis of I. rugosum from Assam with nine bivalents (chromosomes traced in India ink and the photograph bleached with K3 Fe (CN)6). 3, metaphase I of I. rugosum from Brazil showing nine bivalents. 4, diakinesis of I. timorense showing 18 bivalents. 5, metaphase I in I. ciliare with two univalents. 6, diaki nesis in I. diplopogon with 20 bivalents (two are very small). 7, metaphase I of I. diplo pogon with 20 bivalents (two lying together at arrow). 8, diakinesis of I. crassipes with 28 bivalents and one quadrivalent (arrow at quadrivalent). 9, prometaphase I of I. cras sipes with 28 configurations. 10, diakinesis in I. crassipes with thirty bivalents. 11, anaphase I in Sehima nervosum from India showing several lagging chromosomes. 12, metaphases I of Arthraxon hispidus with 18 bivalents, 164 R. P. Celarier Cytologia 22 were due to the slower separation of the occasional quadrivalent. A detailed study of several accessions of this species may prove fruitful but with the present information it appears that this species is 2n=60 and has a basic number of ten (or five) rather than seven as suggested by Moriya and Kondo (1950). I. anthephoroides Miq. was studied by Kuwada (1915) and reported to have a somatic number of 68. A more recent study of this species (Tateoka, 1955) has recorded 72 somatic chromosomes and the author suggested aneu ploidy in the species. No meiotic studies have been reported and the species definitely needs a more detailed analysis. Although only ten species of the genus have been studied cytologically, it is already obvious that at least two basic numbers, nine and ten, are known and it is at least possible that another, seven, exists. It is very likely that this large genus may indicate more than one line of evolution and a detailed analysis of the morphological and cytological variation in the group should prove extremely fruitful. Sehima Forsk. This is a small genus with only eight or nine described species. It appears to be closely related to Ischaemum and was considered only a section of Ischaemum by Hackel (Hackel 1889). It is widespread in the Old World tropics occurring from West Africa to Australia, and one species, S. nervo sum Stapf, covers most of this area. S. nervosum was first reported by Sampath and Ramanathan (1949) as having 34 somatic chromosomes. However, in a later study Mehra (1955) demonstrated that the species has a polyploid series with a basic number of ten.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Types of American Grasses
    z LIBRARY OF Si AS-HITCHCOCK AND AGNES'CHASE 4: SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM oL TiiC. CONTRIBUTIONS FROM THE United States National Herbarium Volume XII, Part 3 TXE&3 OF AMERICAN GRASSES . / A STUDY OF THE AMERICAN SPECIES OF GRASSES DESCRIBED BY LINNAEUS, GRONOVIUS, SLOANE, SWARTZ, AND MICHAUX By A. S. HITCHCOCK z rit erV ^-C?^ 1 " WASHINGTON GOVERNMENT PRINTING OFFICE 1908 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM Issued June 18, 1908 ii PREFACE The accompanying paper, by Prof. A. S. Hitchcock, Systematic Agrostologist of the United States Department of Agriculture, u entitled Types of American grasses: a study of the American species of grasses described by Linnaeus, Gronovius, Sloane, Swartz, and Michaux," is an important contribution to our knowledge of American grasses. It is regarded as of fundamental importance in the critical sys- tematic investigation of any group of plants that the identity of the species described by earlier authors be determined with certainty. Often this identification can be made only by examining the type specimen, the original description being inconclusive. Under the American code of botanical nomenclature, which has been followed by the author of this paper, "the nomenclatorial t}rpe of a species or subspecies is the specimen to which the describer originally applied the name in publication." The procedure indicated by the American code, namely, to appeal to the type specimen when the original description is insufficient to identify the species, has been much misunderstood by European botanists. It has been taken to mean, in the case of the Linnsean herbarium, for example, that a specimen in that herbarium bearing the same name as a species described by Linnaeus in his Species Plantarum must be taken as the type of that species regardless of all other considerations.
    [Show full text]
  • Role of Wild Leguminous Plants in Grasslands Management in Forest Ecosystem of Protected Areas of Madhya Pradesh State
    Vol-6 Issue-2 2020 IJARIIE-ISSN(O)-2395-4396 Role of wild leguminous plants in grasslands management in forest ecosystem of Protected Areas of Madhya Pradesh State Muratkar G. D. , Kokate U. R G. D. Muratkar Department of Environmental Science , Arts , Science and Commerce college Chikhaldara , District Amravati 444807 U. R. Kokate Department of Botany , Arts , Science and Commerce college Chikhaldara , District Amravati 444807 ABSTRACT Grasslands in melghat forest are of annual , taller type with course grasses. The dominant grasses are Themeda quadrivalvis , Heteropogon contortus , Apluda mutica , Chloris barbata . The soil is murmi red with low water holding capacity , in some parts the soil diversity observed black , red soil with clay , silt , sand and loam. The grasses are annual and very few are perennials like Dicanthium annulatum , Dicanthium caricosum , Cynodon barberi , Bothrichloa bladhii. The palatability of th grasses depends upon the soil nutrients , chemicals. The soil in which the wild leguminous plants like Vigna trilobata , Phaseolus radiate , Glycine max , Rhyncosia minima shows the more distribution of wild leguminous plants the soil is with more nitrogenous content due to biological nitrogen fixation and the soil shows the effects on fodder value of the grasses. Keywords : Grasslands Protected Areas , palatable grasses , soil fertility , Wild leguminous plants Introduction Madhya Pradesh is one of those promising states in India.Whether it's Bandhavgarh or Kanha or Pench, each and every national park is far from the civilization and has a rustic charm of its own. Remarkable flora and fauna of these nine National Parks is matched by scenic landscapes along with the incredible diversity.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • A Preliminary Phytolith Reference Collection for the Mountains of Dhufar, Oman
    The use of phytoliths as a proxy for distinguishing ecological communities: A preliminary phytolith reference collection for the mountains of Dhufar, Oman Undergraduate Research Thesis Presented in Partial Fulfillment of the Requirements for Graduation “with Honors Research Distinction in Evolution and Ecology” in the Undergraduate Colleges of The Ohio State University by Drew Arbogast The Ohio State University May 2019 Project Co-Advisors: Professor Ian Hamilton, Department of Evolution, Ecology, and Organismal Biology Professor Joy McCorriston, Department of Anthropology 2 Table of Contents Page List of Tables...................................................................................................................................3 List of Figures..................................................................................................................................4 Abstract............................................................................................................................................5 Introduction......................................................................................................................................6 Background......................................................................................................................................7 Materials and Methods...................................................................................................................11 Results............................................................................................................................................18
    [Show full text]
  • Flora of China 22: 609. 2006. 204. SEHIMA Forsskål, Fl. Aegypt.-Arab
    Flora of China 22: 609. 2006. 204. SEHIMA Forsskål, Fl. Aegypt.-Arab. 178. 1775. 沟颖草属 gou ying cao shu Sun Bixing (孙必兴 Sun Bi-sin); Sylvia M. Phillips Perennial or annual. Culms tufted, simple or sparingly branched. Leaf blades narrowly linear; ligule a line of hairs. Inflores- cence a single terminal raceme, spikelets paired, dissimilar; rachis internodes and pedicels subinflated, stoutly linear to subclavate, densely white-ciliate along margins. Sessile spikelet bisexual, narrow, compressed between internode and pedicel; callus rounded, in- serted into shallowly hollowed internode apex; lower glume leathery, back concave or longitudinally grooved, strongly veined on either side of groove but midvein absent, 2-keeled, keels lateral or becoming dorsal toward base, barely winged, apex elongate, scari- ous, 2-toothed; upper glume boat-shaped, finely awned; lower floret staminate, well developed with palea; upper lemma 2-lobed, awned from sinus; awn geniculate, column glabrous or ciliolate. Pedicelled spikelet large, conspicuous, usually staminate, lanceolate, strongly dorsally compressed, distinctly veined, midvein present, awnless. x = 10 and 20. Five species: E Africa through India to SE Asia and Australia; one species in China. 1. Sehima nervosum (Rottler) Stapf in Prain, Fl. Trop. Africa rachis internodes and pedicels stoutly linear, 3.5–5 mm. Sessile 9: 36. 1917. spikelet yellowish green, 7–9 mm; lower glume narrowly oblong, deeply grooved between keels in lower part, with 6 沟颖草 gou ying cao prominent laterally placed intercarinal veins, inner veins Andropogon nervosus Rottler, Ges. Naturf. Freunde Berlin anastomosing toward apex, apex scarious, 1/4–1/3 glume Neue Schriften 4: 218. 1803 [“nervosum”]; Ischaemum laxum length, shortly 2-toothed; upper glume with straight, 7–13 mm R.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Published Vestigations Together Study Existing Accept Arrangements
    Notes on the Nomenclature of some grasses II by Dr. J.Th. Henrard (Rijksherbarium, Leiden) (Issued September 10th, 1941). In a former article new combinations and critical observa- 1) many all the world. New in- tions were published on various grasses over vestigations in critical genera together with the study of the existing literature made it necessary to accept various other arrangements in this important family. The old system of Bentham, once the basis for a total is and modified and review, now more more many tribes are and limited. The have purified more exactly most recent system we at the moment, is Hubbard’s treatment of this family in the work of Hutchinson: The families of flowering plants. Vol. II. Monocotyle- dons. The grasses are divided there into 26 tribes. We have here the great advantage that aberrant which are into genera, not easy to place one of the formerly accepted tribes, are given as representatives of distinct new tribes. The curious tropical genus Streptochaeta f.i. con- stitutes the tribe of the Streptochaeteae. It is quite acceptable that tribes consist of but may one genus, especially when such a genus is a totally deviating one and cannot be inserted into one of the already existing ones. Such tribes are f.i. the Nardeae with the only northern genus Nardus, and the Mediterranean tribe of the Lygeeae with the only genus Lygeum, one of the Esparto grasses. It is therefore wonder no that Hubbard creates a new tribe, the Anomochloeae, for one of the most curious tropical grasses of the world.
    [Show full text]
  • (Gramineae) Background Concerned, It
    BLUMEA 31 (1986) 281-307 Generic delimitationof Rottboelliaand related genera (Gramineae) J.F. Veldkamp R. de Koning & M.S.M. Sosef Rijksherbarium,Leiden, The Netherlands Summary Generic delimitations within the Rottboelliastrae Stapf and Coelorachidastrae Clayton (for- mal name) are revised. Coelorachis Brongn., Hackelochloa O. Ktze, Heteropholis C.E. Hubb., in Ratzeburgia Kunth, and Rottboellia formosa R. Br, are to be included Mnesithea Kunth. Heteropholis cochinchinensis (Lour.) Clayton and its variety chenii (Hsu) Sosef & Koning are varieties of Mnesithea laevis (Retz.) Kunth. Robynsiochloa Jacq.-Félix is to be included in Rottboellia L.f. The necessary new combinations, a list of genera and representative species, and a key to the genera are given. In the Appendix a new species of Rottboellia, R. paradoxa Koning & Sosef, is described from the Philippines. The enigmatic species Rottboellia villosa Poir. is transferred to Schizachyrium villosum (Poir.) Veldk., comb. nov. Introduction Historical background The of the within the of taxa delimitation genera group represented by Rottboel- lia L. f. and its closest relatives, here taken in the sense of Clayton (1973), has always posed a considerable problem. former In times Rottboellia contained many species. It was divided up in various the of Hackel seemed most ways, but system 5 subgenera as proposed by (1889) authoritative: Coelorachis (Brongn.) Hack., Hemarthria (R. Br.) Hack., Peltophorus (Desv.) HackPhacelurus (Griseb.) Hack., and Thyrsostachys Hack. When at the end of the last century and in the beginning of the present one many large grass genera were split up, e.g. Andropogon, Panicum, Stapf (1917) raised Hackel's subgenera to generic rank, reviving some old names formerly treated as synonyms, and created several new of the of other unable finish his ones.
    [Show full text]
  • The Republic of Sierra Leone
    TTHHEE RREEPPUUBBLLIICC OOFF SSIIEERRRRAA LLEEOONNEE Public Disclosure Authorized SIERRA LEONE WETLANDS CONSERVATION PROJECT OF THE MINISTRY OF AGRICULTURE, FORESTRY AND FOOD SECURITY (MAFFS) Public Disclosure Authorized Revised Draft Public Disclosure Authorized ENVIRONMENT AND SOCIAL MANAGEMENT FRAMEWORK (ESMF) Prepared By: Dyson T. Jumpah [email protected] Public Disclosure Authorized 7TH FLOOR, TRUST TOWERS FARRAR AVENUE, ADABRAKA ACCRA, GHANA. February 2011 Table of Contents EXECUTIVE SUMMARY ................................................................................................................................... VI 1.0 INTRODUCTION ...................................................................................................................................... 3 2.0 OVERALL APPROACH AND METHODOLOGY ............................................................................................ 5 2.1 APPROACH ................................................................................................................................................... 5 2.2 METHODOLOGY ............................................................................................................................................ 6 3.0 OBJECTIVES OF THE ESMF ....................................................................................................................... 7 4.0 DESCRIPTION OF PROPOSED PROJECT .................................................................................................... 8 4.1 PROJECT DEVELOPMENT
    [Show full text]
  • 503 Flora V7 2.Doc 3
    Browse LNG Precinct ©WOODSIDE Browse Liquefied Natural Gas Precinct Strategic Assessment Report (Draft for Public Review) December 2010 Appendix C-18 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 Prepared for Department of State Development December 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 © Biota Environmental Sciences Pty Ltd 2009 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 503 Prepared by: P. Chukowry, M. Maier Checked by: G. Humphreys Approved for Issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc 3 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 4 Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc Biota A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price
    [Show full text]
  • Tripsacum Dactyloides Scientific Name  Tripsacum Dactyloides (L.) L
    Tropical Forages Tripsacum dactyloides Scientific name Tripsacum dactyloides (L.) L. Subordinate taxa: Perennial clump grass, Texas, USA Tripsacum dactyloides (L.) L. var. dactyloides Tiller base with short, knotty rhizome and developing prop roots (ILRI 15488) Tripsacum dactyloides (L.) L. var. hispidum (Hitchc.) de Wet & J.R. Harlan Tripsacum dactyloides (L.) L. var. meridonale de Wet & Timothy Tripsacum dactyloides (L.) L. var. mexicanum de Wet & J.R. Harlan Synonyms Single raceme with white stigmas emerging from ♀ spikelets at base of var. dactyloides: basionym Coix dactyloides L.; raceme; purplish stems Tripsacum dactyloides (L.) L. var. occidentale H.C. Single racemes and subdigitate panicle; Cutler & E.S. Anderson anthers emerging from ♂ apical flowers, stigmas on ♀ basal flowers already var. hispidum (Hitchc.) de Wet & J.R. Harlan: senescent Basionym: Tripsacum dactyloides subsp. hispidum Hitchc. Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Andropogoneae subtribe: Tripsacinae. Morphological description Seed unit with caryopsis Seed units An extremely variable perennial clump grass, with short, fibrous, knotty rhizomes and deep hollow roots. Culms 1‒2.5 (‒4 m) tall, and 3‒5 cm thick at base, branching, prop-rooting from lower nodes; stems purplish, glabrous. Leaf sheath glabrous, often purplish; leaf-blade lanceolate-acuminate, to 30‒75 (‒1.5) cm long and 9‒35 (‒45) mm wide, mostly glabrous, sometimes hairy at the base of the upper blade surface; prominent midrib; Seed production area, Knox margin scabrous; ligule a fringed membrane, 1‒1.5 mm County, Texas, USA (PI 434493) long. Inflorescence 10‒20 (‒30) cm long, terminal and axillary, commonly a single raceme, or subdigitate panicle comprising 2‒3 (‒6) racemes of usually A.
    [Show full text]