Potential Mechanisms of Phenotypic Divergence in Body Size Between Newfoundland and Mainland Black Bear Populations

Total Page:16

File Type:pdf, Size:1020Kb

Potential Mechanisms of Phenotypic Divergence in Body Size Between Newfoundland and Mainland Black Bear Populations Color profile: Generic CMYK printer profile Composite Default screen 1650 Potential mechanisms of phenotypic divergence in body size between Newfoundland and mainland black bear populations Shane P. Mahoney, John A. Virgl, and Kim Mawhinney Abstract: Phenotypic variation in body size and degree of sexual size dimorphism of North American black bears (Ursus americanus) was quantified for populations from New Brunswick, Quebec, Ontario, Maine, Alaska, and the island of Newfoundland. Based on a model of island biogeography developed by Case, we predicted that body size should be larger in Newfoundland bears than in mainland populations. The presence of few large predators and mini- mal competition between herbivore prey on Newfoundland allow an appropriate test of the model (i.e., food availability for bears may differ between populations on the mainland and in Newfoundland). In addition, sexual-selection theory predicts that the coevolution of polygyny and large size will be coupled with an increase in sexual size dimorphism. Therefore, we also predicted that among the six populations, male body mass should scale hyperallometrically with female body mass (i.e., slope > 1). Analysis of deterministic growth curves indicated that bears from Newfoundland attained greater asymptotic body size than populations on the mainland, which supports our first prediction. On average, the relative difference in asymptotic body mass between females from the island and mainland populations was 55%, while the relative difference between males was 37%. However, we found that sexual size dimorphism did not increase disproportionately with body mass among the six populations, which refuted our second prediction. We discuss a range of abiotic and biotic selection pressures possibly responsible for larger body size in Newfoundland bears. We suggest that the ability to exploit seasonally abundant and spatially dispersed dietary protein by female and male black bears on the island has been and is still a primary environmental factor selecting for large body size in Newfoundland bears. Although the relationship between sexual size dimorphism and body size is tenuous (slope ≤ 1), it does suggest that (an)other adaptive mechanism(s), opposing sexual selection for extreme male size, explain(s) a large amount of the variation in sexual size dimorphism among black bear populations. Résumé : La variation phénotypique de la taille et de l’importance du1660 dimorphisme sexuel de la taille a été quantifiée chez des populations nord-américaines d’Ours noirs (Ursus americanus) du Nouveau-Brunswick, du Québec, de l’Ontario, du Maine, de l’Alaska et de Terre-Neuve. D’après un modèle de biogéographie insulaire élaboré par Case, nous avons prédit que la taille des ours de Terre-Neuve devait être supérieure à celle des ours des populations conti- nentales. La présence limitée de prédateurs de grande taille et la compétition minimale entre les proies herbivores à Terre-Neuve sont des conditions appropriées pour tester le modèle (i.e., la disponibilité de la nourriture peut être diffé- rente chez les populations insulaires et les populations continentales). De plus, la théorie de la sélection sexuelle prédit que la coévolution de la polygynie et d’une grande taille devait s’accompagner d’une augmentation de l’importance du dimorphisme sexuel de la taille. Nous avons donc prédit en outre que, chez les six populations, la masse corporelle des mâles devait être hyperallométrique par rapport à la masse des femelles (i.e., pente > 1). L’analyse des courbes de croissance déterministes indique que les ours de Terre-Neuve atteignent une taille asymptotique supérieure à celle des ours des populations continentales, ce qui vérifie notre première prédiction. En moyenne, la différence relative entre la masse asymptotique des femelles insulaires et celle des femelles des populations continentales a été évaluée à 55 % et la différence relative entre les mâles, à 37 %. Cependant, le dimorphisme sexuel de la taille n’a pas augmenté de façon disproportionnée en fonction de la masse corporelle chez les six populations étudiées, ce qui infirme notre deuxième prédiction. Nous examinons une série de pressions de sélection possibles, abiotiques aussi bien que biotiques, qui pour- raient être responsables de la taille plus grande des ours de Terre-Neuve. Nous croyons que la capacité des ours mâles et femelles d’exploiter des sources saisonnières abondantes et éparses de protéines alimentaires dans l’île a été et demeure le facteur environnemental déterminant de la sélection en faveur d’une grande taille chez les ours de Terre- Neuve. Bien que la relation entre le dimorphisme sexuel de la taille et la taille elle-même soit ténue (pente ≤ 1), elle Received August 16, 2000. Accepted July 31, 2001. Published on the NRC Research Press Web site at http://cjz.nrc.ca on September 7, 2001. S.P. Mahoney. Wildlife Division, Department of Forest Resources and Agrifoods, P.O. Box 8700, Building 810, St. John’s, NF A1B 4J6, Canada John A. Virgl.1 Ecological Developmental and Statistical Analysis, 222 Haight Place, Saskatoon, SK S7H 4W2, Canada. Kim Mawhinney. Parks Canada, 1869 Upper Water Street, Halifax, NS B3J 1S9, Canada. 1Corresponding author (e-mail: [email protected]). Can. J. Zool. 79: 1650–1660 (2001) DOI: 10.1139/cjz-79-9-1650 © 2001 NRC Canada J:\cjz\cjz79\cjz-09\Z01-122.vp Thursday, August 30, 2001 11:43:14 AM Color profile: Generic CMYK printer profile Composite Default screen Mahoney et al. 1651 indique tout de même qu’un ou plusieurs autres mécanismes évolutifs qui s’opposent à la sélection sexuelle favorisant le gigantisme des mâles expliquent une grande partie de la variation du dimorphisme sexuel de la taille chez les popu- lations d’ours noirs. [Traduit par la Rédaction] breeding system (Ralls 1977). For example, in monogamous Introduction Mahoney et al. species, individuals are typically small to medium-sized, male Within mammalian species, body size typically varies across parental investment can be high, and there is little or no sexual latitudinal and longitudinal gradients (McNab 1971; Ralls size dimorphism. Conversely, extreme polygyny is associated and Harvey 1985; Geist 1987; Brown 1995). Explanations with large body size, minimal male parental investment, and for the observed latitudinal pattern in body size include ad- a high degree of sexual size dimorphism. Comparative studies aptations for temperature, primary productivity, seasonal un- that regress male body mass on female body mass among predictability of food resources, and prey size. While the primate species have generally shown that male body mass classic correlation between increase in body size and decrease scales hyperallometrically (i.e., slope > 1; Fairbairn and in temperature (Bergmann’s rule) is controversial (Geist 1987), Preziosi 1994) with female body mass (Clutton-Brock et al. a number of studies do support this hypothesis (McNab 1971; 1977; Leutenegger 1978). Sexual selection for large body Burnett 1983; Owen 1989; Quin et al. 1996). Alternatively, size in males, and the associated advantage in terms of increased Rosenzweig (1968) demonstrated that size in mammalian mating opportunities, appears to be the primary mechanism carnivores was explained more by primary productivity than that explains the variation in sexual size dimorphism be- by temperature, and suggested that highly productive envi- tween monogamous and polygynous species (Fisher 1958; ronments should select for larger body size. Boyce (1979) Clutton-Brock et al. 1977; Ralls 1977; Leutenegger 1978). linked increasing latitude with primary productivity and sea- Therefore, an increase in body size for polygynous species sonality, and predicted that variability in food resources should be correlated with an increase in the degree of sexual should select for longer fasting endurance, which is posi- size dimorphism. However, environmental factors, such as tively correlated with body size. Finally, given the relation- spatial and temporal variation in availability of high-quality ship between maximum prey size and predator body size food resources, availability of receptive females, and length (Schoener 1969; Vézina 1985), an increase in prey size with of the mating period, acting on both female and male body latitude may also be coupled with an increase in predator size can constrain sexual selection for increasing size in size (Ralls and Harvey 1985). All of these environmental males (Fisher 1958; Clutton-Brock et al. 1977; Ralls 1977). factors, operating through evolutionary time and space, have We investigated geographic variation in body size and sex- likely contributed to the patterns of body-size variation in ual size dimorphism in North American black bears (Ursus species (Gould 1996). americanus) from five populations on the mainland and the Studies have also shown a link between body-size varia- population on the island of Newfoundland. Bears on New- tion and biogeographical isolation, with insular populations foundland have coexisted with wolves (Canis lupus) and car- often being larger or smaller than mainland populations ibou (Rangifer tarandus) since the end of the Wisconsin ice (Foster 1964; Case 1978). While lagomorphs, ungulates, foxes, age, except during the last 80 years, when wolves have been raccoons, and snakes tend to be relatively smaller on islands, extirpated from the island (Dodds 1983). Moose (Alces alces), other groups such as cricetid rodents, bears, and iguanid liz- which were introduced around the turn of the
Recommended publications
  • Baylisascariasis
    Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B.
    [Show full text]
  • Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2017 Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management Jarod D. Raithel Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Raithel, Jarod D., "Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human- Dominated Landscape: Implications for Management" (2017). All Graduate Theses and Dissertations. 6633. https://digitalcommons.usu.edu/etd/6633 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INTEGRATING BLACK BEAR BEHAVIOR, SPATIAL ECOLOGY, AND POPULATION DYNAMICS IN A HUMAN-DOMINATED LANDSCAPE: IMPLICATIONS FOR MANAGEMENT by Jarod D. Raithel A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: _______________________ _______________________ Lise M. Aubry, Ph.D. Melissa J. Reynolds-Hogland, Ph.D. Major Professor Committee Member _______________________ _______________________ David N. Koons, Ph.D. Eric M. Gese, Ph.D. Committee Member Committee Member _______________________ _______________________ Joseph M. Wheaton, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright Jarod Raithel 2017 All Rights Reserved iii ABSTRACT Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management by Jarod D.
    [Show full text]
  • Ecology of the European Badger (Meles Meles) in the Western Carpathian Mountains: a Review
    Wildl. Biol. Pract., 2016 Aug 12(3): 36-50 doi:10.2461/wbp.2016.eb.4 REVIEW Ecology of the European Badger (Meles meles) in the Western Carpathian Mountains: A Review R.W. Mysłajek1,*, S. Nowak2, A. Rożen3, K. Kurek2, M. Figura2 & B. Jędrzejewska4 1 Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106 Warszawa, Poland. 2 Association for Nature “Wolf”, Twardorzeczka 229, 34-324 Lipowa, Poland. 3 Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland. 4 Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland. * Corresponding author email: [email protected]. Keywords Abstract Altitudinal Gradient; This article summarizes the results of studies on the ecology of the European Diet Composition; badger (Meles meles) conducted in the Western Carpathians (S Poland) Meles meles; from 2002 to 2010. Badgers inhabiting the Carpathians use excavated setts Mustelidae; (53%), caves and rock crevices (43%), and burrows under human-made Sett Utilization; constructions (4%) as permanent shelters. Excavated setts are located up Spatial Organization. to 640 m a.s.l., but shelters in caves and crevices can be found as high as 1,050 m a.s.l. Badger setts are mostly located on slopes with southern, eastern or western exposure. Within their territories, ranging from 3.35 to 8.45 km2 (MCP100%), badgers may possess 1-12 setts. Family groups are small (mean = 2.3 badgers), population density is low (2.2 badgers/10 km2), as is reproduction (0.57 young/year/10 km2). Hunting by humans is the main mortality factor (0.37 badger/year/10 km2).
    [Show full text]
  • Eradication of Stoats (Mustela Erminea) from Secretary Island, New Zealand
    McMurtrie, P.; K-A. Edge, D. Crouchley, D. Gleeson, M.J. Willans, and A.J. Veale. Eradication of stoats (Mustela erminea) from Secretary Island, New Zealand Eradication of stoats (Mustela erminea) from Secretary Island, New Zealand P. McMurtrie1, K-A. Edge1, D. Crouchley1, D. Gleeson2, M. J. Willans3, and A. J. Veale4 1Department of Conservation, Te Anau Area Office, PO Box 29, Lakefront Drive, Te Anau 0640, New Zealand. <[email protected]>. 2Landcare Research, PB 92170, Auckland, NZ. 3The Wilderness, RD Te Anau-Mossburn Highway, Te Anau, NZ. 4School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, NZ. Abstract Stoats (Mustelia erminea) are known to be good swimmers. Following their liberation into New Zealand, stoats reached many of the remote coastal islands of Fiordland after six years. Stoats probably reached Secretary Island (8140 ha) in the late 1800s. Red deer (Cervus elaphus) are the only other mammalian pest present on Secretary Island; surprisingly, rodents have never established. The significant ecological values of Secretary Island have made it an ideal target for restoration. The eradication of stoats from Secretary Island commenced in 2005. Nine-hundred-and-forty-five stoat trap tunnels, each containing two kill traps, were laid out along tracks at a density of 1 tunnel per 8.6 ha. Traps were also put in place on the adjacent mainland and stepping-stone islands to reduce the probability of recolonisation. Pre-baiting was undertaken twice, first in June and then in early July 2005. In late July, the traps were baited, set and cleared twice over 10 days.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Evolution of MHC Class I Genes in Eurasian Badgers, Genus Meles (Carnivora, Mustelidae)
    Heredity (2019) 122:205–218 https://doi.org/10.1038/s41437-018-0100-3 ARTICLE Evolution of MHC class I genes in Eurasian badgers, genus Meles (Carnivora, Mustelidae) 1 1,2 3 4 5 Shamshidin Abduriyim ● Yoshinori Nishita ● Pavel A. Kosintsev ● Evgeniy Raichev ● Risto Väinölä ● 6 7 8 1,2 Alexey P. Kryukov ● Alexei V. Abramov ● Yayoi Kaneko ● Ryuichi Masuda Received: 6 April 2018 / Revised: 30 May 2018 / Accepted: 30 May 2018 / Published online: 29 June 2018 © The Genetics Society 2018 Abstract Because of their role in immune defense against pathogens, major histocompatibility complex (MHC) genes are useful in evolutionary studies on how wild vertebrates adapt to their environments. We investigated the molecular evolution of MHC class I (MHCI) genes in four closely related species of Eurasian badgers, genus Meles. All four species of badgers showed similarly high variation in MHCI sequences compared to other Carnivora. We identified 7−21 putatively functional MHCI sequences in each of the badger species, and 2−7 sequences per individual, indicating the existence of 1−4 loci. MHCI exon 2 and 3 sequences encoding domains α1 and α2 exhibited different clade topologies in phylogenetic networks. Non- α 1234567890();,: 1234567890();,: synonymous nucleotide substitutions at codons for antigen-binding sites exceeded synonymous substitutions for domain 1 but not for domain α2, suggesting that the domains α1 and α2 likely had different evolutionary histories in these species. Positive selection and recombination seem to have shaped the variation in domain α2, whereas positive selection was dominant in shaping the variation in domain α1. In the separate phylogenetic analyses for exon 2, exon 3, and intron 2, each showed three clades of Meles alleles, with rampant trans-species polymorphism, indicative of the long-term maintenance of ancestral MHCI polymorphism by balancing selection.
    [Show full text]
  • The European Badger (Meles Meles) Diet in a Mediterranean Area
    Hystrix It. J. Mumm. (n.s.) 12 (1) (2001): 19-25 THE EUROPEAN BADGER (MELES MELES) DIET IN A MEDITERRANEAN AREA ESTER DEL BOVE* AND ROBERTO ISOTTI” * Kale A. Ghisleri 9, 001 76 Roma, Italy ” Via S. Maria della Speranza 11, 00139 Roma, Italy ABSTRACT - A study on food habits of the European badger (Meles meles) was carried out over a two year period (march 1996 - February 1998) in an area of ca 55 hectares in the Burano Lake Nature Re- serve, central Italy. The badger’s diet was determined by faecal analysis. The results, expressed as the frequency of occurrence, estimated volume (%) and percentage volume of each food item in the overall diet, showed that in this area the badger can be considered as a generalist, with fruit and insects as prin- cipal food items during the whole year, although some seasonal differences did occur. Key words: badger, diet, Mediterranean, central Italy. INTRODUCTION Grosseto) in southern Tuscany, about 130 km The badger’s (Meles meles) diet has been stud- from Rome, is located along the Tyrrhenian ied in several works carried out mainly in coast and includes a brackish lake. The veg- Great Britain (Kruuk and Parish, 1981, 1985; etation is mainly Mediterranean maquis, tax- Mellgren and Roper, 1986; Neal and onomically defined as Quercetea ilicis which Cheesman, 1996). Some hypotheses have been includes Juniperus macrocarpaephoeniceae formulated which suggest that food abun- and Oleo-lentiscetum (Pedrotti et al., 1979), dance, its dispersion in the environment, re- and is characterised by the alternation of dense newal capacity of the food resources, and the maquis and fallow fields.
    [Show full text]
  • Estimating Amur Tiger (Panthera Tigris Altaica) Kill Rates and Potential Consumption Rates Using Global Positioning System Collars
    Journal of Mammalogy, 94(4):000–000, 2013 Estimating Amur tiger (Panthera tigris altaica) kill rates and potential consumption rates using global positioning system collars CLAYTON S. MILLER,* MARK HEBBLEWHITE,YURI K. PETRUNENKO,IVAN V. SERYODKIN,NICHOLAS J. DECESARE, JOHN M. GOODRICH, AND DALE.G.MIQUELLE Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA (CSM, MH, NJD) Wildlife Conservation Society, Bronx, NY 10460, USA (CSM, JMG, DGM) Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia 690041 (YKP, IVS) * Correspondent: [email protected] The International Union for Conservation of Nature has classified all subspecies of tigers (Panthera tigris)as endangered and prey depletion is recognized as a primary driver of declines. Prey depletion may be particularly important for Amur tigers (P. t. altaica) in the Russian Far East, living at the northern limits of their range and with the lowest prey densities of any tiger population. Unfortunately, rigorous investigations of annual prey requirements for any tiger population are lacking. We deployed global positioning system (GPS) collars on Amur tigers during 2009–2012 to study annual kill rates in the Russian Far East. We investigated 380 GPS location clusters and detected 111 kill sites. We then used logistic regression to model both the probability of a kill site at location clusters and the size of prey species at kill sites according to several spatial and temporal cluster covariates. Our top model for predicting kill sites included the duration of the cluster in hours and cluster fidelity components as covariates (overall classification success 86.3%; receiver operating characteristic score of 0.894).
    [Show full text]
  • Canine Distemper Virus As a Threat to Wild Tigers in Russia and Across
    Integrative Zoology 2015; 10: 329–343 doi: 10.1111/1749-4877.12137 1 ORIGINAL ARTICLE 1 2 2 3 3 4 4 5 5 6 Canine distemper virus as a threat to wild tigers in Russia and 6 7 7 8 across their range 8 9 9 10 1,2 1 3,4 5 10 11 Martin GILBERT, Svetlana V. SOUTYRINA, Ivan V. SERYODKIN, Nadezhda SULIKHAN, 11 12 Olga V. UPHYRKINA,5 Mikhail GONCHARUK,6 Louise MATTHEWS,2 Sarah CLEAVELAND2 12 13 1 13 14 and Dale G. MIQUELLE 14 15 1Wildlife Conservation Society, Bronx, New York, USA, 2Boyd Orr Centre for Population and Ecosystem Health, Institute of 15 16 Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 16 17 Glasgow, UK, 3Pacifc Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia, 17 18 18 4Far Eastern Federal University, Vladivostok, Russia, 5Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian 19 19 6 20 Academy of Sciences, Vladivostok, Russia and Lazovskii State Nature Zapovednik , Lazo, Primorskii Krai, Russia 20 21 21 22 Abstract 22 23 23 Canine distemper virus (CDV) has recently been identifed in populations of wild tigers in Russia and India. Ti- 24 24 ger populations are generally too small to maintain CDV for long periods, but are at risk of infections arising 25 25 from more abundant susceptible hosts that constitute a reservoir of infection. Because CDV is an additive mor- 26 26 tality factor, it could represent a signifcant threat to small, isolated tiger populations.
    [Show full text]
  • (WILD): Population Densities and Den Use of Red Foxes () and Badgers
    The German wildlife information system (WILD): population densities and den use of red foxes () and badgers () during 2003-2007 in Germany Oliver Keuling, Grit Greiser, Andreas Grauer, Egbert Strauß, Martina Bartel-Steinbach, Roland Klein, Ludger Wenzelides, Armin Winter To cite this version: Oliver Keuling, Grit Greiser, Andreas Grauer, Egbert Strauß, Martina Bartel-Steinbach, et al.. The German wildlife information system (WILD): population densities and den use of red foxes () and badgers () during 2003-2007 in Germany. European Journal of Wildlife Research, Springer Verlag, 2010, 57 (1), pp.95-105. 10.1007/s10344-010-0403-z. hal-00598188 HAL Id: hal-00598188 https://hal.archives-ouvertes.fr/hal-00598188 Submitted on 5 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur J Wildl Res (2011) 57:95–105 DOI 10.1007/s10344-010-0403-z ORIGINAL PAPER The German wildlife information system (WILD): population densities and den use of red foxes (Vulpes vulpes) and badgers (Meles meles) during 2003–2007 in Germany Oliver Keuling & Grit Greiser & Andreas Grauer & Egbert Strauß & Martina Bartel-Steinbach & Roland Klein & Ludger Wenzelides & Armin Winter Received: 22 September 2009 /Revised: 11 May 2010 /Accepted: 21 May 2010 /Published online: 5 June 2010 # Springer-Verlag 2010 Abstract Monitoring the populations of badgers and red densities estimated as well as potential annual population foxes may help us to manage these predator species as a increases were calculated for 2003–2007.
    [Show full text]
  • International Bear News Spring 2021 Vol
    International Bear News Spring 2021 Vol. 30 no. 1 Andean bears in a patch of upper montane forest east of Quito, Ecuador. See article on page 17. Photo credit: Carnivore Lab-USFQ/ Fundación Condor Andino/Fundación Jocotoco Tri-Annual Newsletter of the International Association for Bear Research and Management (IBA) and the IUCN/SSC Bear Specialist Group TABLE OF CONTENTS 4 President’s Column John Hechtel 6 BSG Co-Chairs Column The Truth is Generally Not “Somewhere in the Middle” 8 IBA Member News A Message from the Executive Director Transition News Bear Research and Management in the Time of the Pandemic: One More Tale Changes for the 2021–2024 Term of the Bear Specialist Group In Memoriam: Markus Guido Dyck 17 Conservation Andean Bear Conservation on Private Lands in the Highlands East of Quito An Itinerant Interactive Tool for Environmental Education: A Strategy for the Conservation of Andean Bears in 31 Colombian Municipalities 23 Illegal Trade The Heterogeneity of Using Bear Bile in Vietnam 25 Human-Bear Conflicts Promoting Coexistence Between People and Sloth Bears in Gujarat, India Through a Community Outreach Programme AatmavatSarvabhuteshu 28 Biological Research Novel Insights into Andean Bear Home Range in the Chingaza Massif, Colombia. American Black Bear Subpopulation in Florida’s Eastern Panhandle is Projected to Grow 33 Manager’s Corner In their 25th Year of Operation, the Wind River Bear Institute Expands Wildlife K-9 Program, Publishes Research, and Initiates Applied Management Strategies to Reduce Human-Caused Mortality of North American Bears. Best Practices for Less-lethal Management of Bears Florida’s Transition from Culvert to Cambrian Traps 40 Reviews Speaking of Bears: The Bear Crisis and a Tale of Rewilding from Yosemite, Sequoia, and Other National Parks One of Us; A Biologist’s Walk Among Bears, by Barrie K.
    [Show full text]
  • Live Capture and Handling of the European Wildcat in Central Italy
    Hystrix It. J. Mamm. (n.s.) 21(1) (2010): 73-82 LIVE CAPTURE AND HANDLING OF THE EUROPEAN WILDCAT IN CENTRAL ITALY LOLITA BIZZARRI*, MORENO LACRIMINI, BERNARDINO RAGNI Università degli Studi di Perugia, Dipartimento di Biologia Cellulare e Ambientale, via Elce di Sotto I, 06123 Perugia, Italia *Corresponding author: e-mail: [email protected] Received 7 April 2010; accepted 25 May 2010 ABSTRACT - Between 2003 and 2006, a live-trapping of European wildcats (Felis silvestris) was carried out in the Apennines (central Italy). Double-door tunnel cage traps were set along trap-lines. A box containing live quails as bait was securely attached to the side of each cage. Trapping was carried out in 8 sessions at a total of 60 trap-sites, mainly inside woods (65%). The distance between the traps ranged from 146 m to 907 m and the length of each trap-line ranged from 541 m to 2632 m. There were 16 captures of 11 different wildcats, the capture success rate being 1 wildcat/209 trap-days. Nine males and 2 females were caught, suggesting sex-biased trapping selection. In addition to wildcats, 20 non-target species were captured during the 8 sessions. No animal was injured by the traps and no wildcat was endangered by narcosis or handling. The technique proved to be effective for future field studies that envisage the radio-tracking of wildcats. Key words: Felis silvestris, trapping, Apennines, Italy RIASSUNTO - Cattura e immobilizzazione del gatto selvatico in Italia centrale. Tra il 2003 e il 2006 è stato svolto un programma di ricerca sul gatto selvatico europeo (Felis silvestris) in un'area dell'Appennino centrale.
    [Show full text]