Live Capture and Handling of the European Wildcat in Central Italy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conservation of the Wildcat (Felis Silvestris) in Scotland: Review of the Conservation Status and Assessment of Conservation Activities
Conservation of the wildcat (Felis silvestris) in Scotland: Review of the conservation status and assessment of conservation activities Urs Breitenmoser, Tabea Lanz and Christine Breitenmoser-Würsten February 2019 Wildcat in Scotland – Review of Conservation Status and Activities 2 Cover photo: Wildcat (Felis silvestris) male meets domestic cat female, © L. Geslin. In spring 2018, the Scottish Wildcat Conservation Action Plan Steering Group commissioned the IUCN SSC Cat Specialist Group to review the conservation status of the wildcat in Scotland and the implementation of conservation activities so far. The review was done based on the scientific literature and available reports. The designation of the geographical entities in this report, and the representation of the material, do not imply the expression of any opinion whatsoever on the part of the IUCN concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The SWCAP Steering Group contact point is Martin Gaywood ([email protected]). Wildcat in Scotland – Review of Conservation Status and Activities 3 List of Content Abbreviations and Acronyms 4 Summary 5 1. Introduction 7 2. History and present status of the wildcat in Scotland – an overview 2.1. History of the wildcat in Great Britain 8 2.2. Present status of the wildcat in Scotland 10 2.3. Threats 13 2.4. Legal status and listing 16 2.5. Characteristics of the Scottish Wildcat 17 2.6. Phylogenetic and taxonomic characteristics 20 3. Recent conservation initiatives and projects 3.1. Conservation planning and initial projects 24 3.2. Scottish Wildcat Action 28 3.3. -
Baylisascariasis
Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B. -
Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2017 Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management Jarod D. Raithel Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Raithel, Jarod D., "Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human- Dominated Landscape: Implications for Management" (2017). All Graduate Theses and Dissertations. 6633. https://digitalcommons.usu.edu/etd/6633 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INTEGRATING BLACK BEAR BEHAVIOR, SPATIAL ECOLOGY, AND POPULATION DYNAMICS IN A HUMAN-DOMINATED LANDSCAPE: IMPLICATIONS FOR MANAGEMENT by Jarod D. Raithel A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: _______________________ _______________________ Lise M. Aubry, Ph.D. Melissa J. Reynolds-Hogland, Ph.D. Major Professor Committee Member _______________________ _______________________ David N. Koons, Ph.D. Eric M. Gese, Ph.D. Committee Member Committee Member _______________________ _______________________ Joseph M. Wheaton, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright Jarod Raithel 2017 All Rights Reserved iii ABSTRACT Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management by Jarod D. -
Felis Silvestris, Wild Cat
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T60354712A50652361 Felis silvestris, Wild Cat Assessment by: Yamaguchi, N., Kitchener, A., Driscoll, C. & Nussberger, B. View on www.iucnredlist.org Citation: Yamaguchi, N., Kitchener, A., Driscoll, C. & Nussberger, B. 2015. Felis silvestris. The IUCN Red List of Threatened Species 2015: e.T60354712A50652361. http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T60354712A50652361.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information -
African Wildcat 1 African Wildcat
African Wildcat 1 African Wildcat African Wildcat[1] Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Felidae Genus: Felis Species: F. silvestris Subspecies: F. s. lybica Trinomial name Felis silvestris lybica Forster, 1770 The African wildcat (Felis silvestris lybica), also known as the desert cat, and Vaalboskat (Vaal-forest-cat) in Afrikaans, is a subspecies of the wildcat (F. silvestris). They appear to have diverged from the other subspecies about 131,000 years ago.[2] Some individual F. s. lybica were first domesticated about 10,000 years ago in the Middle East, and are among the ancestors of the domestic cat. Remains of domesticated cats have been included in human burials as far back as 9,500 years ago in Cyprus.[3] [4] Physical characteristics The African wildcat is sandy brown to yellow-grey in color, with black stripes on the tail. The fur is shorter than that of the European subspecies. It is also considerably smaller: the head-body length is 45 to 75 cm (17.7 to 29.5 inches), the tail 20 to 38 cm (7.87 to 15 inches), and the weight ranges from 3 to 6.5 kg (6.61 to 14.3 lbs). Distribution and habitat The African wildcat is found in Africa and in the Middle East, in a wide range of habitats: steppes, savannas and bushland. The sand cat (Felis margarita) is the species found in even more arid areas. Skull African Wildcat 2 Behaviour The African wildcat eats primarily mice, rats and other small mammals. When the opportunity arises, it also eats birds, reptiles, amphibians, and insects. -
Serval Fact Sheet
Right 50mm Fore Right 50mm Hind SERVAL FAST FACTS DESCRIPTION Scientific Name: Leptailurus serval Servals have an elongated neck, very long legs, and very large Conversation Status: Least concern ears on a small, delicate skull. Their coat is pale yellow, with black markings consisting either of large spots that tend to merge Body Length: 59 - 92cm into longitudinal stripes on the neck and back. The underside is whitish grey or yellowish. Their skull is more elongated than Weight: 12 - 18kg most cats. The ears are broad based, high on the head and Gestation: 67 - 79 days close together, with black backs and a very distinct white eye spot. The tail is relatively short, only about one third of the Number of Young: 1 - 4 body length, and has a number of black rings along it. Habitat: Well-watered savanna long- grass environments, particularly reed beds DIET and other riparian habitats. Rodents, birds, reptiles, frogs, insects and other species smaller than they are. Distribution: Servals live throughout most of sub-Saharan Africa (except the central BEHAVIOUR African rainforest), the deserts and plains of Namibia, and most of Botswana and South Servals locate prey in tall grass and reeds primarily by Africa. sound and make a characteristic high leap as they jump on their prey, striking it on impact to prevent escape in thick vegetation. They also use vertical leaps to seize bird and insect prey by “clapping” the front paws together or striking a downward blow. From a standing start a serval can leap 3m vertically into the air to catch birds. -
Savannah Cat’ ‘Savannah the Including Serval Hybrids Felis Catus (Domestic Cat), (Serval) and (Serval) Hybrids Of
Invasive animal risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Serval hybrids Hybrids of Leptailurus serval (serval) and Felis catus (domestic cat), including the ‘savannah cat’ Anna Markula, Martin Hannan-Jones and Steve Csurhes First published 2009 Updated 2016 © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Front cover: Close-up of a 4-month old F1 Savannah cat. Note the occelli on the back of the relaxed ears, and the tear-stain markings which run down the side of the nose. Photo: Jason Douglas. Image from Wikimedia Commons under a Public Domain Licence. Invasive animal risk assessment: Savannah cat Felis catus (hybrid of Leptailurus serval) 2 Contents Introduction 4 Identity of taxa under review 5 Identification of hybrids 8 Description 10 Biology 11 Life history 11 Savannah cat breed history 11 Behaviour 12 Diet 12 Predators and diseases 12 Legal status of serval hybrids including savannah cats (overseas) 13 Legal status of serval hybrids including savannah cats -
Ecology of the European Badger (Meles Meles) in the Western Carpathian Mountains: a Review
Wildl. Biol. Pract., 2016 Aug 12(3): 36-50 doi:10.2461/wbp.2016.eb.4 REVIEW Ecology of the European Badger (Meles meles) in the Western Carpathian Mountains: A Review R.W. Mysłajek1,*, S. Nowak2, A. Rożen3, K. Kurek2, M. Figura2 & B. Jędrzejewska4 1 Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106 Warszawa, Poland. 2 Association for Nature “Wolf”, Twardorzeczka 229, 34-324 Lipowa, Poland. 3 Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland. 4 Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland. * Corresponding author email: [email protected]. Keywords Abstract Altitudinal Gradient; This article summarizes the results of studies on the ecology of the European Diet Composition; badger (Meles meles) conducted in the Western Carpathians (S Poland) Meles meles; from 2002 to 2010. Badgers inhabiting the Carpathians use excavated setts Mustelidae; (53%), caves and rock crevices (43%), and burrows under human-made Sett Utilization; constructions (4%) as permanent shelters. Excavated setts are located up Spatial Organization. to 640 m a.s.l., but shelters in caves and crevices can be found as high as 1,050 m a.s.l. Badger setts are mostly located on slopes with southern, eastern or western exposure. Within their territories, ranging from 3.35 to 8.45 km2 (MCP100%), badgers may possess 1-12 setts. Family groups are small (mean = 2.3 badgers), population density is low (2.2 badgers/10 km2), as is reproduction (0.57 young/year/10 km2). Hunting by humans is the main mortality factor (0.37 badger/year/10 km2). -
Origin of the Egyptian Domestic Cat
UPTEC X 12 012 Examensarbete 30 hp Juni 2012 Origin of the Egyptian Domestic Cat Carolin Johansson Molecular Biotechnology Programme Uppsala University School of Engineering UPTEC X 12 012 Date of issue 2012-06 Author Carolin Johansson Title (English) Origin of the Egyptian Domestic Cat Title (Swedish) Abstract This study presents mitochondrial genome sequences from 22 Egyptian house cats with the aim of resolving the uncertain origin of the contemporary world-wide population of Domestic cats. Together with data from earlier studies it has been possible to confirm some of the previously suggested haplotype identifications and phylogeny of the Domestic cat lineage. Moreover, by applying a molecular clock, it is proposed that the Domestic cat lineage has experienced several expansions representing domestication and/or breeding in pre-historical and historical times, seemingly in concordance with theories of a domestication origin in the Neolithic Middle East and in Pharaonic Egypt. In addition, the present study also demonstrates the possibility of retrieving long polynucleotide sequences from hair shafts and a time-efficient way to amplify a complete feline mitochondrial genome. Keywords Feline domestication, cat in ancient Egypt, mitochondrial genome, Felis silvestris libyca Supervisors Anders Götherström Uppsala University Scientific reviewer Jan Storå Stockholm University Project name Sponsors Language Security English Classification ISSN 1401-2138 Supplementary bibliographical information Pages 123 Biology Education Centre Biomedical Center Husargatan 3 Uppsala Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687 Origin of the Egyptian Domestic Cat Carolin Johansson Populärvetenskaplig sammanfattning Det är inte sedan tidigare känt exakt hur, när och var tamkatten domesticerades. -
Eradication of Stoats (Mustela Erminea) from Secretary Island, New Zealand
McMurtrie, P.; K-A. Edge, D. Crouchley, D. Gleeson, M.J. Willans, and A.J. Veale. Eradication of stoats (Mustela erminea) from Secretary Island, New Zealand Eradication of stoats (Mustela erminea) from Secretary Island, New Zealand P. McMurtrie1, K-A. Edge1, D. Crouchley1, D. Gleeson2, M. J. Willans3, and A. J. Veale4 1Department of Conservation, Te Anau Area Office, PO Box 29, Lakefront Drive, Te Anau 0640, New Zealand. <[email protected]>. 2Landcare Research, PB 92170, Auckland, NZ. 3The Wilderness, RD Te Anau-Mossburn Highway, Te Anau, NZ. 4School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, NZ. Abstract Stoats (Mustelia erminea) are known to be good swimmers. Following their liberation into New Zealand, stoats reached many of the remote coastal islands of Fiordland after six years. Stoats probably reached Secretary Island (8140 ha) in the late 1800s. Red deer (Cervus elaphus) are the only other mammalian pest present on Secretary Island; surprisingly, rodents have never established. The significant ecological values of Secretary Island have made it an ideal target for restoration. The eradication of stoats from Secretary Island commenced in 2005. Nine-hundred-and-forty-five stoat trap tunnels, each containing two kill traps, were laid out along tracks at a density of 1 tunnel per 8.6 ha. Traps were also put in place on the adjacent mainland and stepping-stone islands to reduce the probability of recolonisation. Pre-baiting was undertaken twice, first in June and then in early July 2005. In late July, the traps were baited, set and cleared twice over 10 days. -
The 2008 IUCN Red Listings of the World's Small Carnivores
The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals). -
Environmental Impact Report
ENVIRONMENTAL IMPACT REPORT SUPPLEMENT TO THE REPORT ON THE ENVIROMENTAL IMPACT OF THE “CONSTRUCTION OF THE KARCINO-SARBIA WIND FARM (17 WIND TURBINES)” OF 2003 Name of the undertaking: KARCINO-SARBIA Wind Farm (under construction) Contractor: AOS Agencja Ochrony Środowiska Sp. z o.o. based in Koszalin Arch. No. 52/OŚ/OOS/06 Koszalin, September 2006 Team: Bogdan Gutkowski, M.Sc.Eng.– Expert for Environmental Impact Assessment Appointed by the Governor of the West Pomerania Province Marek Ziółkowski, M.Sc. Eng. – Environmental Protection Expert of the Ministry of Environmental Protection, Natural Resources and Forestry; Environmental Protection Consultant Dagmara Czajkowska, M.Sc. Eng. – Specialist for Environmental Impact Assessment, Specialist for Environmental Protection and Management Ewa Reszka, M.Sc. – Specialist for the Protection of Water and Land and Protection against Impact of Waste Damian Kołek, M.Sc.Eng. – Environmental Protection Specialist 2 CONTENTS I. INTRODUCTION .................................................................................................................. 5 II. GENERAL INFORMATION ABOUT THE PROJECT ..................................................... 9 1. Location and adjacent facilities....................................................................................................... 9 2. Modifications to the project .......................................................................................................... 10 3. Technical description of the project ..............................................................................................