Biotechnology in Agriculture Series

Total Page:16

File Type:pdf, Size:1020Kb

Biotechnology in Agriculture Series BIOTECHNOLOGY IN AGRICULTURE SERIES General Editor: Gabrielle J. Persley, International Service for National Agri- cultural Research (The Hague, Netherlands), and Project Manager, World Bank/lSNAR/ACIAR/AIDAB Biotechnology Study. For a number of years, biotechnology has held out the prospect for major advances in agricultural production, but only recently have the results of this new revolution started to reach application in the field. The potential for further rapid developments is however immense. The aim of this new book series is to review advances and current knowledge in key areas of biotechnology as applied to crop and animal production, forestry and food science. Some titles will focus on individual crop species or groups of species, others on specific goals such as plant protection or animal health, with yet others addressing particular methodo- logies such as tissue culture, transtormation or immunoassay. In some cases, relevant molecular and cell biology and genetics will also be covered. Issues of relevance to both industrialized and developing countries will be addressed, and social, economic and legal implications will also be considered. Most titles will be written for research workers in the biological sciences and agriculture, but some will also be useful as text- books for senior-level students in these disciplines. Editorial Advisory Board: P.J. Brumby, formerly of the World Bank, Washington DC, USA. E.P. Cunningham, FAO, Rome, Italy. P. Day, Rutgers University, New Jersey, USA. J.H. Dodds, International Potato Center (CIP), Peru. J.J. Doyle, International Laboratory tor Research on Animal Diseases, Nairobi, Kenya. S.L. Krugman, United States Department of Agriculture, Forest Service. W,J. Peacock, CSIRO, Division of Plant Industry, Australia. Titles Available: 1 : Beyond Mendel’s Garden: Biotechnology in the Service of World Agriculture G.J. Pers/ey 2: Agricultural Biotechnology: Opportunities for International Development Edited by G.J. Persley 3: The Molecular and Cellular Biology of the Potato Edited by M.E. Vayda and W.D. Park 4: Advanced Methods in Plant Breeding and Biotechnology Edited by D. R. Murray 5: Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology Edited by P. R. Shewry 6: Kice Biotechnology Edited by G.S. Khush and G.H. Toenniessen 7: Plant Genetic Manipulation for Crop Protection Edited by A. Gatehouse, V. Hilder, dnd D. Boulter Titles in Preparation Biotechnology of Perennial Fruit Crops Edited by F. Hammerschlag and R. Litz Non-Food Uses of Agricultural Raw Materials: Economics, Biotechnology and Politics C. Spelman Rice Biotechnology Edited by G S Khush International Rice Research Institute The Philippines and G H Toenniessen The Rockefeller Foundation, New York USA C AB International in association with the International Rice Research Institute To Robert F. and Sunny Chandler ~ ~ ~~ ~ C . A. B International Tel: Wallingford (0491) 32111 Wallingford Telex: 847964 (COMAGG G) Oxon OX10 8DE Telecom Gofd/Dialcom: 84: CAU00l UK Fax: (0491) 33508 © C • A • B International 1 991. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. Published in Association with: international Rice Research Institute P.O. Box 933 1099 Manila Philippines A catalogue record for this hook is available from the British library ISBN 0 85198 712 5 (CABI) ISSN 0960-202X (CABI) ISBN 971 22 0013 2 (IRRI) Typeset by Leaper & Gard Ltd, Brisrol Printed and bound in the UK by The Alden Press Ltd, Oxford Contents Foreword vii Preface ix 1. The World Rice Economy: Challenges Ahead 1 Cristina C David 2. Research Priorities for Rice Biotechnology 19 Robert W Herdt 3. Genetic Diversity of Wild and Cultivated Rice 55 H I Oka 4. Rice Karyotype, Marker Genes, and Linkage Croups 83 Gurdev S Khush and Toshiro Kinoshita 5. Development and Use of Restriction Fragment Length Polymorphism in Rice Breeding and Genetics 109 S R McCouch and S D Tanksley 6. Rice Tissue Culture and its Application 135 P T Lynch, R P Finch, M R Davey and E C Cocking 7. Transformation and Kegeneration of Kice Protoplasts 157 Thomas K Hodges, Jianying Peng, Leszek A Lyznik, and David S Koetje v vi Contents 8. Assessment of Rice Genetic Transformation Techniques 175 Jun Cao, Wanggen Zhang, David McElroy, and Ray Wu 9. The Identification and Characterization of Rice Nuclear Genes 199 Thomas W Okita 10. Gene Expression in Rice 225 Virginia Walbot and Daniel Gallie 11. Potentially Useful Genes for Rice Genetic Engineering 253 Gary H Toenniessen 12. Molecular Probes for Disease Diagnosis and Monitoring 281 Jan E Leach and Frank F White 13. Trospects for the Future 309 Gary H Toenniessen and Gurdev S Khush Index 315 Foreword Populations in rice growing countries were increasing at a faster rate than food production in the 1950s and 1960s. Because of these trends, several authorities predicted large-scale food shortages in Asia resulting in famines and social upheavals, by the 1970s. Concerned at the impending crisis, the Rockefeller Foundation, the Ford Foundation, and the Government of the Philippines estab- lished the International Rice Research Institute (IRRI) in 1960 to harness the power of science for solving the problem of stagnant rice yields in developing countries. A series of high yielding rice varieties and other technology developed at IRRI and national agricultural research systems started the green revolution in rice and led to major increases in rice production. Most of the rice growing countries in Asia, where 92% of the world's rice is grown, became self-sufficient in food production. Worldwide, rice production doubled in a 25-year period, from 257 million tons in 1965 to 520 million tons in 1990. But the spectre of food shortages looms once again. The annual rate of increase in rice production has slowed down and there are no new areas that can be brought into rice production. World population which stands at 5.3 billion now is likely to exceed 6 billion by the turn of the century and 8 billion by 2020. The population of rice eaters is increasing at an exceptionally fast rate; the number of rice consumers will probably double by the year 2020. The Inter- national Food Policy Research Institute predicts that demand for rice will exceed production by the end of this century. We must therefore accelerate the rate of growth in rice production. New rice varieties with higher yield potential are essential to achieve this goal. In IRRI’s long-term research strategy, we have conceptualized rice varieties of the future for five rice-growing ecologies. Such varieties must have higher yield potential than present high-yielding-varieties, excellent grain quality, resistance to biotic and abiotic stresses, and should use inputs more efficiently. Recent developments in cellular and molecular genetics give us tools that hold great vii VIII Foreword promise in expediting such genetic improvement. Little has been known until recently, however, about the cellular and molecular genetics of rice. Fortunately, the Rockefeller Foundation again took the initiative and organized an Inter- national Program on Rice Biotechnology in 1985. The Foundation is funding research on rice biotechnology in carefully selected laboratories in industrial countries, and helping build capacity to use biotechnology in rice improvement in developing countries. Much useful information has been generated during the last 5 years; rice is now considered a ‘model’ cereal crop for biotechnology research. The Rockefeller Foundation and IRRI have collaborated in producing this book, which reviews the latest breakthroughs in rice biotechnology. I hope this volume will prove useful to rice breeders, geneticists and biotechnologists alike, and will help pave way for another scientific breakthrough toward a higher yield plateau for rice. K L Lampe Director General International Rice Research Institute Los Baños, The Philippines Preface Rice is the most important food crop of the developing world and rice genetic improvement through breeding has been an effective mechanism for delivering the benefits of science and technology to hundreds of millions of resource-poor people. A research system with regional, national, and international components is now in place for producing improved rice varieties and making them available to farmers that need them. Biotechnology can significantly strengthen rice breeding programs and help produce new varieties with higher yield potential and greater yield stability. These should improve the efficiency of rice production and allow an expansion of the rice-growing area, thereby preventing future food shortages from occurring as demand for rice increases because of population growth and economic development. A strong breeding program is a prerequisite to the application of the new biotechnologies for rice genetic improvement. Biotechnology will enable rice breeders to achieve results more quickly and efficiently and will help them to attain breeding goals not feasible using conventional techniques. Biotechnology will complement, not replace, breeding. In less than a decade research on rice biotechnology has moved from a position of neglect to a position where some now consider rice a model plant for cereal research. A useful knowledge base on rice molecular genetics and cellular biology has been established and the tools necessary for applying this knowledge to rice genetic improvement are being refined and becoming available. Tissue culture techniques such as anther culture, embryo rescue, and use of somaclonal variants have contributed to the release of new rice varieties. These technologies are of proven benefit to rice breeding and through research are becoming applic- able to a broader range of rice cultivars and breeding objectives. Most molecular genetic techniques are still being developed, but progress has been more rapid with rice than any other cereal. An RFLP map with 350 markers ix I x Preface has been prepared and several genes of economic importance have already been tagged with markers.
Recommended publications
  • Complete Sequence and Gene Organization of the Mitochondrial Genome of the Land Snail Albinuria Cornlea
    Copyright 0 1995 by the Genetics Society of America Complete Sequence and Gene Organization of the Mitochondrial Genome of the Land Snail Albinuria cornlea Evi Hatzoglou, George C. Rodakis and Rena Lecanidou Department of Biochemistry, Cell and Molecular Biology, and Genetics, University of Athens, Panepistimiopolis, Athens 157 01, Greece Manuscript receivedJanuary 31, 1995 Accepted for publication May 15, 1995 ABSTRACT The complete sequence (14,130 bp) of the mitochondrial DNA (mtDNA) of the land snail Ahinaria coerulea was determined. It contains 13 protein, two rRNA and 22 tRNA genes. Twenty-four of these genes are encoded by one and 13 genes by the other strand. The gene arrangement shares almost no similarities with that of two other molluscs for which the complete gene content and arrangement are known, the bivalve Mytilus edulis and the chiton Kathanna tunicata; the protein and rRNA gene order is similar to that of another terrestrial gastropod, Cepaeu nemoralis. Unusual features include the following: (1) the absence of lengthy noncoding regions (there are only 141 intergenic nucleotides interspersed at different gene borders, the longest intergenic sequence being 42 nucleotides), (2) the presence of several overlapping genes (mostlytRNAs), (3) the presence of tRNA-like structures and other stem and loop structures within genes. An RNA editing system acting on tRNAs must necessarily be invoked for posttranscriptional extension of the overlapping tRNAs. Due to these features, and also because of the small size of its genes (e.g.,it contains the smallest rRNA genes among the known coelomates), it is one of the most compact mitochondrial genomes known to date.
    [Show full text]
  • Nucleic Acid Notes
    For Internal Circulation only Nucleic acids Dr Sairindhri Tripathy Definition Any of a group of complex compounds found in all living cells and viruses, composed of purines, pyrimidines, carbohydrates, and phosphoric acid. Two forms of nucleic acids :- • DNA (deoxyribonucleic acid ) • RNA (ribonucleic acid ) Functions Functions of DNA:- • A permanent storage place for genetic information. • Controls the synthesis of RNA. • Determines the protein development in new cells. Functions of RNA :- • Messenger RNA (m RNA ) • Ribosomal ( rRNA) • Transfer (tRNA) • In post transcription modify the other RNA’s • Transfer genetic information Component of nucleic acids Nucleic acids are build up by the monomeric units -nucleotides that have a pentose sugar, nitrogen base, and phosphate Base PO4 Nucleoside Sugar + Phosphate nucleoside = Nucleotide Function of nucleotides • Build blocks or monomeric units • Structural component of several coenzymes of B- complex vitamins. e.g. FAD. Coenzyme A • Serve as intermediates in biosynthesis of carbohydrate, lipid & protins. e.g. S-adenosylmethionine • Control several metabolic reaction. Structure of Nucleotides Nitrogen-Containing Bases (Purines &pyrimidines) O NH2 H CH3 N N N O N N N H H adenine (A) thymine (T) O NH2 O H N CH3 H CH3 N N N N NH2 N O N O N H H H guanine (G) cytosine (C) uracil (U) Structure of purine (A,G) & pyrimidines (C, T, U) Sugars HOCH2 O OH HOCH2 O OH OH OH OH (no O) ribose deoxyribose Nucleosides in DNA Base Sugar Nucleoside Adenine (A) Deoxyribos Adenosine Guanine (G) Deoxyribose Guanosine Cytosine (C) Deoxyribose Cytidine Thymine (T) Deoxyribose Thymidine Nucleosides in RNA Base Sugar Nucleoside Adenine (A) ribose Adenosine Guanine (G) ribose Guanosine Cytosine (C) ribose Cytidine Uracil (U) ribose Uridine Nucleoside di and triphosphate Adenosine 5’ monophosphate Thymidine 5’ monophosphate Different form of DNA double helix • DNA exist in at least 6 different form-A to E and Z • B-form of DNA double helix described by Watson ad crick.
    [Show full text]
  • Studies of Intracellular Transport and Anticancer Drug Action by Functional Genomics in Yeast
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 402 Studies of intracellular transport and anticancer drug action by functional genomics in yeast MARIE GUSTAVSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 UPPSALA ISBN 978-91-554-7360-0 2008 urn:nbn:se:uu:diva-9408 Dissertation presented at Uppsala University to be publicly examined in C10:301, BMC, Husargatan 3, Uppsala, Tuesday, December 16, 2008 at 13:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in Swedish. Abstract Gustavsson, M. 2008. Studies of intracellular transport and anticancer drug action by functional genomics in yeast. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 402. 56 pp. Uppsala. ISBN 978-91-554-7360-0. This thesis describes the use of functional genomics screens in yeast to study anticancer drug action and intracellular transport. The yeast Saccharomyces cerevisiae provides a particularly useful model system for global drug screens, due to the availability of knockout mutants for all yeast genes. A complete collection of yeast deletion mutants was screened for sensitivity to monensin, a drug that affects intracellular transport. A total of 63 deletion mutants were recovered, and most of them were in genes involved in transport beyond the Golgi. Surprisingly, none of the V-ATPase subunits were identified. Further analysis showed that a V-ATPase mutant interacts synthetically with many of the monensin-sensitive mutants. This suggests that monensin may act by interfering with the maintenance of an acidic pH in the late secretory pathway. The second part of the thesis concerns identification of the underlying causes for susceptibility and resistance to the anticancer drug 5-fluorouracil (5-FU).
    [Show full text]
  • Mitochondrial Mrna Translation Is Required for Maintenance of Oxidative Capacity David Lee University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 Mitochondrial mRNA Translation is Required for Maintenance of Oxidative Capacity David Lee University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Cell Biology Commons, Molecular Biology Commons, and the Molecular, Cellular, and Tissue Engineering Commons Recommended Citation Lee, David, "Mitochondrial mRNA Translation is Required for Maintenance of Oxidative Capacity" (2018). Theses and Dissertations. 2626. http://scholarworks.uark.edu/etd/2626 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Mitochondrial mRNA Translation is Required for Maintenance of Oxidative Capacity A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Kinesiology David E. Lee Louisiana State University – Shreveport Bachelor of Science in Kinesiology, 2012 University of Arkansas Master of Science in Kinesiology, 2015 May 2018 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ________________________________ Nicholas P. Greene, Ph.D. Dissertation Committee Chair ________________________________ ______________________________ Tyrone A. Washington, Ph.D. Narasimhan Rajaram, Ph.D. Committee Member
    [Show full text]
  • Next-Generation Sequencing Profiling of Mitochondrial Genomes in Gout
    Tseng et al. Arthritis Research & Therapy (2018) 20:137 https://doi.org/10.1186/s13075-018-1637-5 RESEARCH ARTICLE Open Access Next-generation sequencing profiling of mitochondrial genomes in gout Chia-Chun Tseng1, Chung-Jen Chen2,3, Jeng-Hsien Yen4,5, Hsi-Yuan Huang6, Jan-Gowth Chang6, Shun-Jen Chang7* and Wei-Ting Liao8,9* Abstract Background: Accumulating evidence implicates mitochondrial DNA (mtDNA) alleles, which are independent of the nuclear genome, in disease, especially in human metabolic diseases. However, this area of investigation has lagged behind in researching the nuclear alleles in complex traits, for example, in gout. Methods: Next-generation sequencing was utilized to investigate the relationship between mtDNA alleles and phenotypic variations in 52 male patients with gout and 104 age-matched male non-gout controls from the Taiwan Biobank whole-genome sequencing samples. Differences from a reference sequence (GRCh38) were identified. The sequence kernel association test (SKAT) was applied to identify gout-associated alleles in mitochondrial genes. The tools Polymorphism Phenotyping, Sorting Intolerant From Tolerant (SIFT), Predict the pathology of Mutations (PMUT), Human Mitochondrial Genome Database (mtDB), Multiple Alignment using Fast Fourier Transform (MAFFT), and Mammalian Mitochondrial tRNA Genes (Mamit-tRNA) were used to evaluate pathogenicity of alleles. Validation of selected alleles by quantitative polymerase chain reaction of single nucleotide polymorphisms (qPCR SNPs) was also performed. Results: We identified 456 alleles in patients with gout and 640 alleles in non-gout controls with 274 alleles shared by both. Mitochondrial genes were associated with gout, with MT-CO3, MT-TA, MT-TC,andMT-TT containing potentially pathogenic gout-associated alleles and displaying evidence of gene-gene interactions.
    [Show full text]
  • HUMAN MITOCHONDRIAL TRANSFER Rnas: ROLE of PATHOGENIC MUTATION in DISEASE
    INVITED REVIEW ABSTRACT: The human mitochondrial genome encodes 13 proteins. All are subunits of the respiratory chain complexes involved in energy metab- olism. These proteins are translated by a set of 22 mitochondrial transfer RNAs (tRNAs) that are required for codon reading. Human mitochondrial tRNA genes are hotspots for pathogenic mutations and have attracted interest over the last two decades with the rapid discovery of point mutations associated with a vast array of neuromuscular disorders and diverse clinical phenotypes. In this review, we use a scoring system to determine the pathogenicity of the mutations and summarize the current knowledge of structure–function relationships of these mutant tRNAs. We also provide readers with an overview of a large variety of mechanisms by which muta- tions may affect the mitochondrial translation machinery and cause disease. Muscle Nerve 37: 150–171, 2008 HUMAN MITOCHONDRIAL TRANSFER RNAs: ROLE OF PATHOGENIC MUTATION IN DISEASE FERNANDO SCAGLIA, MD, and LEE-JUN C. WONG, PhD Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA Accepted 17 September 2007 Normal mitochondrial function depends on both tion and termination factors, ribosomal proteins, the expression of the mitochondrial genome and the and enzymes involved in maturation and posttran- expression of at least 1,300 nuclear genes whose scriptional modification of tRNAs are nuclear en- products are imported into the mitochondria. Hu- coded. However, the complete set of 22 tRNAs and man mitochondrial DNA (mtDNA) is a 16,569-kb two major rRNAs are of mitochondrial origin. circular, double-stranded molecule. It encodes 13 of The adaptation of the bacterial ancestors of mito- more than 80 polypeptide subunits of the mitochon- chondria to the new environment of eukaryotic cells drial respiratory chain complexes and contains 24 brought the advantage of ATP production via the pro- additional genes required for mitochondrial protein cess of oxidative phosphorylation.
    [Show full text]
  • THE EVOLVING Trna MOLECULE
    June 1981 35 THE EVOLVING tRNA MOLECULE Authors: R. J. Cedergren Department of Biochemistry David Sankoff Center for Mathematical Research University of Montreal Quebec, Canada Bernard LaRue Department of Chemistry and Biology University of Quebec Trois-Rivieres Quebec, Canada Henri Grosjean Laboratory of Chemical Biology Free University of Brussels Brussels, Belgium Referee: Dieter Sol1 Department of Biophysics and Biochemistry Yale University New Haven, Connecticut I. AN INVITATION TO tRNA EVOLUTION For personal use only. ". , il n'est pas de vraie creation sans secret." Albert Carnus, Le myrhe de Sisyphe Interest in tRNA biochemistry is attested to by the imposing mass of data generated by a veritable army of researchers. The approach to this information used here will be somewhat unique among the large number of existing tRNA reviews in that it will be organized and interpreted within an evolutionary framework. In addition to a discussion and an extension of current hypotheses on tRNA evolution, an evaluation is presented of the basic premise of this review: that tRNA structural and functional data can provide information on early evolutionary events. The importance of tRNA evolution lies in its relation to the origin and development of the genetic code.' In a sense, the discovery of the universality of the genetic code in eukaryotes and prokaryotes (see Section VII. B. on mitochondria) was a mixed blessing to the field of molecular evolution.* On one hand it clarified the basis of protein sequence comparisons involving different organisms, but on the other it limited the applicability of comparative methods for identifying primitive vs. advanced forms. Thus, genetic code evolutionary models have had to be based on indirect evidence and/ or speculation.
    [Show full text]
  • Bharathidhasanar Matric Hr.Sec.School
    BHARATHIDHASANAR MATRIC HR.SEC.SCHOOL ARAKKONAM BIOLOGY (botany) XII-STD STUDY MATERIAL -2014 BASED ON TAMILNADU TEXT BOOK “All the best but be the best” R. VIJAYAKUMAR., M.Sc.,(Zoology)B.A.,(English) B.Ed., Bharathidhasanar Matric Hr.Sec.School-Arakkonam XII TH BIO-BOTANY YEAR PLAN & PORTION – 2014-15 Unit Test-1 Lesson no. 1.TAXONOMY OF ANGIOSPERMS Unit Test -2 Lesson no. 1. TAXONOMY OF ANGIOSPERMS Unit Test-3 Lesson no. 2. PLANT ANATOMY Unit Test-4 Lesson no. 2 .PLANT ANATOMY Unit Test -5 Lesson no. 3.CELL BIOLOGY AND GENETICS Unit Test -6 Lesson no. 3.CELL BIOLOGY AND GENETICS Unit Test -7 Lesson no. 4. BIOTECHNOLOGY Unit Test -8 Lesson no. 5. PLANT PHYSIOLOGY Unit test – 9 Lesson no. 5. PLANT PHYSIOLOGY Unit Test – 10 Lesson no. 6.BIOLOGY IN HUMAN WELFARE MONTHLY EXAMS AND PORTION Monthly Exam – 1 Lesson no. 1.TAXONOMY OF ANGIOSPERMS Lesson no. 2. PLANT ANATOMY Monthly Exam – 2 Lesson no. 3.CELL BIOLOGY AND GENETICS Lesson no. 4. BIOTECHNOLOGY Lesson no. 1.TAXONOMY OF ANGIOSPERMS QUARTERLY EXAM Lesson no. 2. PLANT ANATOMY Lesson no. 3. CELL BIOLOGY AND GENETICS Lesson no. 4. BIOTECHNOLOGY Monthly Exam - 3 Lesson no. 5. PLANT PHYSIOLOGY Monthly Exam - 4 Lesson no. 6. BIOLOGY IN HUMAN WELFARE HALF YEARLY EXAM (FULL PORTION EXAM) (FULL PORTION EXAM) BHARATHIDHASANAR MAT. HR. SEC. SCHOOL, ARAKKONAM-3 STD: XII UNIT TEST MARKS: 38 SUB: BIO-BOTANY TIME : 0.45 Minutes PART – I BIO-BOTANY SECTION-A Note : i) Choose and write the correct answer: 5 x 1 = 5 ii) Each questions carries ONE marks.
    [Show full text]
  • Dissertation
    DISSERTATION Titel der Dissertation Molecular Pathology of Mitochondrial tRNAIle Mutations Verfasserin Dipl.-Biol. Andrea Fettermann angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr. rer. nat.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 091 441 Dissertationsgebiet lt. Studienblatt: Genetik - Mikrobiologie Betreuerin / Betreuer: Univ.-Prof. Dr. Andrea Barta Contents CONTENTS Contents………………………………………………………………………….………....... I Abbreviations……………………………………………………………...….…...……….... V Abstract……………………………………….………………………...…….….……......… 1 Zusammenfassung…………………………………………………...……….…..…..……. 3 1. Introduction .......................................................................................................... 5 1.1 Mitochondria ..................................................................................................... 5 1.1.1 Organization of Mitochondria ...................................................................... 5 1.1.2 Functions of Mitochondria .......................................................................... 6 1.1.3 The Respiratory Chain ................................................................................ 7 1.1.3.1 Complex I: NADH:Ubiquinone Oxidoreductase .................................... 8 1.1.3.2 Complex II: Succinate:Ubiquinone Oxidoreductase ............................. 8 1.1.3.3 Complex III: Ubiquinone-Cytochrome c Oxidoreductase ..................... 9 1.1.3.4 Complex IV: Cytochrome c Oxidase .................................................... 9 1.1.3.5 Complex V:
    [Show full text]
  • Identification and Classification of Pseudoknots and Their Impact on RNA 3D Structure Prediction“
    MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis „ Identification and Classification of Pseudoknots and their Impact on RNA 3D Structure Prediction“ verfasst von / submitted by Irene Katharina Beckmann, BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2018 / Vienna 2018 Studienkennzahl lt. Studienblatt / A 066 834 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Masterstudium Molekulare Biologie degree programme as it appears on the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dipl.-Phys. Dr. Ivo Hofacker [ May 7, 2018 at 9:44 ] Irene K. Beckmann, BSc: Identification and Classification of Pseudoknots and their Impact on RNA Structure Prediction © Mai 2018 [ May 7, 2018 at 9:44 ] ACKNOWLEDGMENTS First of all, I would like to thank my supervisor Prof. Dr. Dipl.-Phys. Ivo Hofacker for the great opportunity to enable this master thesis at the ”Theoretical Biochemistry Group” at the University of Vienna. Special thanks go to Bernhard Thiel, MSc for the advice, encourage- ment and the shared instructive computational input. I would also like to thank my colleague Roman Ochsenreiter as well as the whole TBI-team for the helpful input. Finally, I would express my very profound gratitude to my family for providing continuous support and who were a source of fabulous motivation. iii [ May 7, 2018 at 9:44 ] [ May 7, 2018 at 9:44 ] CONTENTS 1 introduction1 1.1 Ribonucleic
    [Show full text]
  • 2018-02-06-Warren Final Dissertation
    MITOCHONDRIAL DYSFUNCTION IN THE STRIATUM: IMPLICATIONS FOR L-DOPA INDUCED DYSKINESIA By Emily Booth Warren Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmacology February 28, 2018 Nashville, TN Approved: Christine Konradi, Ph.D. Aaron B. Bowman, Ph.D. Joshua P. Fessel, M.D., Ph.D. Eugenia Gurevich, Ph.D. Qi Zhang, Ph.D. To Kirti and Amy, who have endured. ii ACKNOWLEDGEMENTS I am profoundly grateful to the vast number of people who have supported me throughout my PhD program. First, I would like to thank my advisor, Christine Konradi, for her mentorship, guidance, and training. I am also indebted to the members of my committee, Qi Zhang, Eugenia Gurevich, Josh Fessel, and Aaron Bowman, for their patience and assistance throughout my graduate career. I am especially appreciative of Aaron’s generosity over the last few months of my graduate work, by providing me a place in his own lab and a rare opportunity to continue to grow in a new setting. I would like to thank the Department of Pharmacology for continuing to support me as I completed my dissertation, with an especial thanks to Karen Gieg for her tireless efforts. I am also grateful to Dehui Mi and Josh Bauer of the High Throughput Screening Core, Sean Schaffer and Bob Matthews of the Cell Imaging Shared Resource, and Donald Stec and Markus Voehler of the Small Molecule and Biomolecular NMR facilities. A large portion of the work in this dissertation depended on the expertise of these members of these core facilities, and all have been exceptionally willing to help and answer my endless questions.
    [Show full text]
  • Transfer RNA Detection by Small RNA Deep Sequencing and Disease
    Guo et al. BMC Genomics (2015) 16:727 DOI 10.1186/s12864-015-1929-y RESEARCH ARTICLE Open Access Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes Yan Guo1, Amma Bosompem2, Sanjay Mohan4, Begum Erdogan2, Fei Ye3, Kasey C. Vickers4, Quanhu Sheng1, Shilin Zhao1, Chung-I Li5, Pei-Fang Su6, Madan Jagasia4, Stephen A. Strickland4, Elizabeth A. Griffiths7 and Annette S. Kim2,8* Abstract Background: Although advances in sequencing technologies have popularized the use of microRNA (miRNA) sequencing (miRNA-seq) for the quantification of miRNA expression, questions remain concerning the optimal methodologies for analysis and utilization of the data. The construction of a miRNA sequencing library selects RNA by length rather than type. However, as we have previously described, miRNAs represent only a subset of the species obtained by size selection. Consequently, the libraries obtained for miRNA sequencing also contain a variety of additional species of small RNAs. This study looks at the prevalence of these other species obtained from bone marrow aspirate specimens and explores the predictive value of these small RNAs in the determination of response to therapy in myelodysplastic syndromes (MDS). Methods: Paired pre and post treatment bone marrow aspirate specimens were obtained from patients with MDS who were treated with either azacytidine or decitabine (24 pre-treatment specimens, 23 post-treatment specimens) with 22 additional non-MDS control specimens. Total RNA was extracted from these specimens and submitted for next generation sequencing after an additional size exclusion step to enrich for small RNAs. The species of small RNAs were enumerated, single nucleotide variants (SNVs) identified, and finally the differential expression of tRNA-derived species (tDRs) in the specimens correlated with diseasestatus and response to therapy.
    [Show full text]