Role of Coupled Dynamics and a Strictly Conserved Lysine Residue in the Function

Total Page:16

File Type:pdf, Size:1020Kb

Role of Coupled Dynamics and a Strictly Conserved Lysine Residue in the Function Role of Coupled Dynamics and a Strictly Conserved Lysine Residue in the Function of Bacterial Prolyl-tRNA Synthetase and Substrate Binding by a Related trans- Editing Enzyme ProXp-ala Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Brianne Leigh Sanford, B.S. Graduate Program in Chemistry The Ohio State University 2014 Dissertation Committee: Dr. Karin Musier-Forsyth, Advisor Dr. Mark Foster Dr. Jane Jackman i Copyright by Brianne Leigh Sanford 2014 ii Abstract During protein synthesis, aminoacyl-tRNA synthetases (ARSs) are responsible for activating a specific amino acid and charging it to its cognate tRNA. Amino acids are often misactivated and mischarged by ARSs due to their similar size. To increase accuracy, about half of ARSs have evolved editing mechanisms. Prolyl-tRNA synthetase (ProRS) requires editing to distinguish Ala and Cys from cognate Pro. In many bacterial species, this is accomplished through a triple-sieve editing mechanism. In the first sieve, larger amino acids are excluded while Ala, Cys and Pro are all activated and charged to tRNAPro. In the second sieve, the insertion (INS) domain accepts Ala-tRNAPro for deacylation. Finally, in the third sieve Cys-tRNAPro is accepted and deacylated by YbaK, an editing protein that is homologous to the INS domain. ProRS is a multidomain enzyme with a catalytic domain, anticodon binding domain, and the INS domain. The internal dynamics of this multidomain protein were probed to test the hypothesis that functional dynamics of the domains are disrupted upon deletion of the INS domain, resulting in decreased catalytic activity. We show that the INS and active site domains show anticorrelated dynamics. The dynamics of the INS domain and a catalytically important proline-binding loop are also coupled. Mutation of conserved residues at the interface of the INS and catalytic domains exhibited a significant effect on the dynamics of the proline-binding loop and ultimately catalytic function of the enzyme. ii In Escherichia coli (Ec) ProRS these domain dynamics are propagated through a set of dynamically coupled residues that form a pathway of residue-to-residue interactions between the catalytic and editing domains. Residues in this contiguous network are generally highly conserved and mutation along these pathways results in a significant impact on enzyme function. The role of a strictly conserved Lys residue in the INS active site in Ala-tRNAPro binding and catalysis was also examined. This Lys at position 279 in Ec ProRS was calculated to have a perturbed pKa of 14.2. The protonated state of K279 is stabilized by a nearby acidic residue. Mutation of this acidic residue to a positively charged residue resulted in increased deacylation activity. When a mutant was made wherein the positions of the conserved Lys and charged residue were swapped, deacylation activity was abolished. This supports the conclusion that both the positive charge and position of the Lys are critical for proper substrate orientation. There exists a modified triple sieve editing mechanism in Caulobacter crescentus (Cc), which encodes for a ProRS lacking a full-length, functional INS domain. A small free-standing protein, ProXp-ala, is homologous to the INS domain and deacylates mischarged Ala-tRNAPro. Cc also encodes for a YbaK to deacylate Cys-tRNAPro. ProXp- ala prefers to deacylate Ala-tRNAPro based on recognition of C1:G72 and A73 in the acceptor stem. NMR studies will define the tRNA acceptor stem interaction sites on ProXp-ala, shedding light on which elements in the enzyme define the Ala-tRNA substrate specificity. Altogether, the work presented here reveals new insights into the dynamics of aminoacyl-tRNA synthetases and how they interact with their substrates. iii Dedication This is dedicated to my loving husband and my ever-supportive parents and family. iv Acknowledgements First and foremost, I would like to thank my advisor Dr. Karin Musier-Forsyth for providing me with the opportunity to join her lab and work on a range of projects. She has set up a great research environment where I had access to a diverse set of instruments and techniques required to accomplish the goals of my projects. Under her guidance, she has pushed me to become an independent thinker and has taught me to always think about the “big picture”–how do my everyday experiments contribute to the goal of the project? I believe it is these skills, which are not necessarily taught in every research lab, are what make a great scientist. I would also like to thank my collaborators with whom I have worked together on great projects. Dr. Sanchita Hati sparked my interest in studying aminoacyl-tRNA synthetases during my undergraduate studies, and I was fortunate to continue these projects in graduate school in Dr. Musier-Forsyth’s lab. I am also grateful for the wonderful collaboration with Dr. Mark Foster’s lab. Dr. Foster is very good at pushing me to think about my projects from another point of view, helping me think of other ways to approach a problem. Through this collaboration, I have had the opportunity to work with a brilliant graduate student Eric Danhart. He has very patiently answered my many questions about the NMR data collected for my projects. I would also like to thank Dr. Jane Jackman for helping me think critically and prepare for my candidacy exam and for helping me complete my final thesis. v I also owe a great debt of gratitude to all the members of the Musier-Forsyth lab who have helped me think critically about my projects and even everyday questions about techniques in lab. I have had many brainstorming sessions with Oscar Vargas- Rodriguez, Jo Marie Bacumso and Drs. Mom Das and Marina Bakhtina. I am very appreciative for frequent discussions about computational methods and RNA structures with Dr. William Cantara. I also have several friends to thank for keeping me sane and focused throughout graduate school– Tiffiny Rye-McCurdy and Alice Duchon for our frequent coffee breaks and my two friends Drs. Tricia Meyer and Allyson Fry with whom I started this whole journey. Lastly, I have to thank my family members that have always supported my endeavors. My husband has been by my side during every leg of this journey, celebrating my accomplishments and at times, providing much needed encouragement. My parents and sisters have also been very supportive, despite the many miles between us. I also have to thank my aunt for her constant motivation and my husband’s parents for their kind support. Without all these people in my life and at Ohio State, I would not have been able to start or finish this journey and for that I am grateful. vi Vita 2008………….............................................. B.S. Chemistry, cum laude University of Wisconsin – Eau Claire 2008-present……………………………….. Graduate Researcher Assistant, Department of Chemistry and Biochemistry, The Ohio State University Publications 1. Weimer K, Shane B, Brunetto M, Bhattacharyya S, and Hati S. Evolutionary Basis for the Coupled-domain Motions in Thermus thermophilus Leucyl-tRNA Synthetase. (2009) J. Biol. Chem., 284:10088-10099. 2. Sanford B, Cao B, Johnson J, Zimmerman K, Strom A, Mueller R, Bhattacharyya S, Musier-Forsyth K, and Hati S. Role of Coupled Dynamics in the Catalytic Activity of Prokaryotic-like Prolyl-tRNA Synthetases. (2012) Biochemistry. 51 (10), 2146-2156. 3. Johnson J, Sanford B, Strom A, Tadayon S, Lehman B, Zirbes A, Bhattacharyya S, Musier-Forsyth K, and Hati S. Multiple Pathways Promote Dynamical Coupling Between Catalytic Domains in Escherichia coli Prolyl-tRNA Synthetase. (2013) Biochemistry. 52 (25), 4399-4412. 4. Bartholow T, Sanford B, Cao B, Schmit H, Johnson J, Meitzner J, Bhattacharyya S, Musier-Forsyth K, and Hati S. Strictly Conserved Lysine of Prolyl-tRNA Synthetase vii Editing Domain Facilitates Binding and Positioning of Misacylated tRNAPro. (2014) Biochemistry. 53 (6), 1059-1068. Fields of Study Major Field: Chemistry viii Table of Contents Abstract………………………………………………………………………………….. ii Dedication……………………………………………………………………………..... iv Acknowledgements…………………………………………………………………...…. v Vita……………………………………………………………………………………... vii Publications…………………………………………………………………………….. vii List of Tables…………………………………………………………………………… xv List of Figures………………………………………………………………………….. xvi List of Schemes............................................................................................................... xix List of Symbols and Abbreviations…………………………………………………..... xx Main Chapters: 1. Introduction………………………………………………………………………...... 1 1.1. Background…………………………………………………………………….. 1 1.1.1. The Central Dogma of Molecular Biology………………………………. 1 1.1.2. Aminoacyl-tRNA Synthetases………………………………………….... 2 1.1.3. Transfer RNA structure and aminoacyl-tRNA synthetase recognition……………………………………………………………….. 4 1.2. Quality Control During Protein Synthesis....………………………………….. 5 1.2.1. Pre-transfer Editing……………………………………………………… 6 1.2.2. Post-transfer Editing……………………………………………………... 7 ix 1.2.2.1. Trans-editing factors…………………………………............... 8 1.2.2.2. Post-transfer editing in trans by the INS superfamily……...….. 9 1.3. Significance of editing in vivo……………………………………………......... 10 1.4. Purpose of this study…………………………………………………………... 11 2. Role of Coupled Dynamics in the Catalytic Activity of Prokaryotic-like Prolyl-tRNA Synthetases………………………………………………………………………….. 19 2.1. Introduction……………………………………………………………………. 19 2.2. Materials and Methods…………………………………………………………
Recommended publications
  • Identification and Codon Reading Properties of 5
    Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mandal, D., C. Kohrer, D. Su, I. R. Babu, C. T. Y. Chan, Y. Liu, D. Soll, et al. “Identification and Codon Reading Properties of 5- Cyanomethyl Uridine, a New Modified Nucleoside Found in the Anticodon Wobble Position of Mutant Haloarchaeal Isoleucine tRNAs.” RNA 20, no. 2 (December 16, 2013): 177–188. As Published http://dx.doi.org/10.1261/rna.042358.113 Publisher Cold Spring Harbor Laboratory Press/RNA Society Version Final published version Citable link http://hdl.handle.net/1721.1/91989 Terms of Use Creative Commons Attribution-Noncommerical Detailed Terms http://creativecommons.org/licenses/by-nc/3.0/ Downloaded from rnajournal.cshlp.org on April 3, 2014 - Published by Cold Spring Harbor Laboratory Press Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs Debabrata Mandal, Caroline Köhrer, Dan Su, et al. RNA 2014 20: 177-188 originally published online December 16, 2013 Access the most recent version at doi:10.1261/rna.042358.113 Supplemental http://rnajournal.cshlp.org/content/suppl/2013/12/03/rna.042358.113.DC1.html Material References This article cites 38 articles, 17 of which can be accessed free at: http://rnajournal.cshlp.org/content/20/2/177.full.html#ref-list-1 Creative This article is distributed exclusively by the RNA Society for the first 12 months after the Commons full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml).
    [Show full text]
  • Characterization of a B. Subtilis Minor Isoleucine Trna Deduced from Tdna Having a Methionine Anticodon CAT1
    J. Biochem. 119, 811-816 (1996) Characterization of a B. subtilis Minor Isoleucine tRNA Deduced from tDNA Having a Methionine Anticodon CAT1 Jitsuhiro Matsugi,2 Katsutoshi Murao, and Hisayuki Ishikura Laboratory of Chemistry, Jichi Medical School, 3311-1 Minamikawachi-machi, Tochigi 329-04 Received for publication, December 1, 1995 Bacillus subtilis, which belongs to Gram-positive eubacteria, has been predicted to have a minor isoleucine tRNA transcribed from the gene possessing the CAT anticodon, which corresponds to methionine. We isolated this tRNA and determined its sequence including modified nucleotides. Modified nucleotide analyses using TLC, UV, and FAB mass spectros copy revealed that the first letter of the anticodon is modified to lysidine [4-amino-2-(N6 - lysino)-1-ƒÀ-D-ribofuranosyl pyrimidine]. As a result, this tRNA agrees with the minor one predicted from the DNA sequence and is thought to decode the isoleucine codon AUA. Key words: Bacillus subtilis, FAB mass spectroscopy, lysidine, modified nucleotide, tRNA. In the codon table, isoleucine is assigned to three codons, lysidine in the wobble position can form a base pair only AUU, AUC, and AUA, but theoretically two kinds of with adenosine, not with guanosine, and consequently the anticodon (GAU and UAU) are sufficient to decode these minor tRNA11e can read only the AUA codon. At the same three codons. To decode the AUA codon, some organisms time, lysidine contributes to a change in charging specificity utilize a minor species of tRNA11e whose first letter of the from methionine to isoleucine (7). anticodon is a unique or an unknown modified nucleotide. In B.
    [Show full text]
  • Complete Sequence and Gene Organization of the Mitochondrial Genome of the Land Snail Albinuria Cornlea
    Copyright 0 1995 by the Genetics Society of America Complete Sequence and Gene Organization of the Mitochondrial Genome of the Land Snail Albinuria cornlea Evi Hatzoglou, George C. Rodakis and Rena Lecanidou Department of Biochemistry, Cell and Molecular Biology, and Genetics, University of Athens, Panepistimiopolis, Athens 157 01, Greece Manuscript receivedJanuary 31, 1995 Accepted for publication May 15, 1995 ABSTRACT The complete sequence (14,130 bp) of the mitochondrial DNA (mtDNA) of the land snail Ahinaria coerulea was determined. It contains 13 protein, two rRNA and 22 tRNA genes. Twenty-four of these genes are encoded by one and 13 genes by the other strand. The gene arrangement shares almost no similarities with that of two other molluscs for which the complete gene content and arrangement are known, the bivalve Mytilus edulis and the chiton Kathanna tunicata; the protein and rRNA gene order is similar to that of another terrestrial gastropod, Cepaeu nemoralis. Unusual features include the following: (1) the absence of lengthy noncoding regions (there are only 141 intergenic nucleotides interspersed at different gene borders, the longest intergenic sequence being 42 nucleotides), (2) the presence of several overlapping genes (mostlytRNAs), (3) the presence of tRNA-like structures and other stem and loop structures within genes. An RNA editing system acting on tRNAs must necessarily be invoked for posttranscriptional extension of the overlapping tRNAs. Due to these features, and also because of the small size of its genes (e.g.,it contains the smallest rRNA genes among the known coelomates), it is one of the most compact mitochondrial genomes known to date.
    [Show full text]
  • Nucleic Acid Notes
    For Internal Circulation only Nucleic acids Dr Sairindhri Tripathy Definition Any of a group of complex compounds found in all living cells and viruses, composed of purines, pyrimidines, carbohydrates, and phosphoric acid. Two forms of nucleic acids :- • DNA (deoxyribonucleic acid ) • RNA (ribonucleic acid ) Functions Functions of DNA:- • A permanent storage place for genetic information. • Controls the synthesis of RNA. • Determines the protein development in new cells. Functions of RNA :- • Messenger RNA (m RNA ) • Ribosomal ( rRNA) • Transfer (tRNA) • In post transcription modify the other RNA’s • Transfer genetic information Component of nucleic acids Nucleic acids are build up by the monomeric units -nucleotides that have a pentose sugar, nitrogen base, and phosphate Base PO4 Nucleoside Sugar + Phosphate nucleoside = Nucleotide Function of nucleotides • Build blocks or monomeric units • Structural component of several coenzymes of B- complex vitamins. e.g. FAD. Coenzyme A • Serve as intermediates in biosynthesis of carbohydrate, lipid & protins. e.g. S-adenosylmethionine • Control several metabolic reaction. Structure of Nucleotides Nitrogen-Containing Bases (Purines &pyrimidines) O NH2 H CH3 N N N O N N N H H adenine (A) thymine (T) O NH2 O H N CH3 H CH3 N N N N NH2 N O N O N H H H guanine (G) cytosine (C) uracil (U) Structure of purine (A,G) & pyrimidines (C, T, U) Sugars HOCH2 O OH HOCH2 O OH OH OH OH (no O) ribose deoxyribose Nucleosides in DNA Base Sugar Nucleoside Adenine (A) Deoxyribos Adenosine Guanine (G) Deoxyribose Guanosine Cytosine (C) Deoxyribose Cytidine Thymine (T) Deoxyribose Thymidine Nucleosides in RNA Base Sugar Nucleoside Adenine (A) ribose Adenosine Guanine (G) ribose Guanosine Cytosine (C) ribose Cytidine Uracil (U) ribose Uridine Nucleoside di and triphosphate Adenosine 5’ monophosphate Thymidine 5’ monophosphate Different form of DNA double helix • DNA exist in at least 6 different form-A to E and Z • B-form of DNA double helix described by Watson ad crick.
    [Show full text]
  • WO 2017/112943 Al 29 June 2017 (29.06.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/112943 Al 29 June 2017 (29.06.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07K 14/705 (2006.01) A61K 31/7088 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C12N 15/12 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (21) International Application Number: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, PCT/US2016/068552 MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (22) International Filing Date: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 23 December 2016 (23. 12.2016) RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (25) Filing Language: English ZA, ZM, ZW. (26) Publication Language: English 4 Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/387,168 23 December 201 5 (23. 12.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/290,413 2 February 2016 (02.02.2016) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: MODERNATX, INC.
    [Show full text]
  • Life Without Trna[Superscript Ile]-Lysidine Synthetase: Translation of the Isoleucine Codon AUA in Bacillus Subtilis Lacking the Canonical Trna[Ile Over 2]
    Life without tRNA[superscript Ile]-lysidine synthetase: translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA[Ile over 2] The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kohrer, C., D. Mandal, K. W. Gaston, H. Grosjean, P. A. Limbach, and U. L. RajBhandary. “Life without tRNAIle-lysidine synthetase: translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA2Ile.” Nucleic Acids Research (November 4, 2013). As Published http://dx.doi.org/10.1093/nar/gkt1009 Publisher Oxford University Press Version Final published version Citable link http://hdl.handle.net/1721.1/83245 Detailed Terms http://creativecommons.org/licenses/by-nc/3.0/ Nucleic Acids Research Advance Access published November 14, 2013 Nucleic Acids Research, 2013, 1–12 doi:10.1093/nar/gkt1009 Life without tRNAIle-lysidine synthetase: translation of the isoleucine codon AUA in Bacillus subtilis Ile lacking the canonical tRNA2 Caroline Ko¨ hrer1, Debabrata Mandal1, Kirk W. Gaston2, Henri Grosjean3, Patrick A. Limbach2 and Uttam L. RajBhandary1,* 1Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, 2Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH 45221, USA and 3Centre de Ge´ ne´ tique Mole´ culaire, CNRS, Gif-sur-Yvette, F-91198, France Received August 29, 2013; Revised October 3, 2013; Accepted October 5, 2013 Downloaded from ABSTRACT Crick proposes how a single tRNA with G in the first position of the anticodon (also called the wobble base) Translation of the isoleucine codon AUA in most can read codons ending in U or C and how a tRNA prokaryotes requires a modified C (lysidine or with U (or a modified U) can read codons ending in A Ile http://nar.oxfordjournals.org/ agmatidine) at the wobble position of tRNA2 to or G (3–5).
    [Show full text]
  • Discovery and Characterization of Trnaile Lysidine Synthetase (Tils)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 584 (2010) 272–277 journal homepage: www.FEBSLetters.org Review Discovery and characterization of tRNAIle lysidine synthetase (TilS) Tsutomu Suzuki *, Kenjyo Miyauchi Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan article info abstract Article history: In the bacterial decoding system, the AUA codon is deciphered as isoleucine by tRNAIle bearing lysi- Received 12 November 2009 dine (L, 2-lysyl-cytidine) at the wobble position. Lysidine is an essential modification that deter- Revised 21 November 2009 mines both the codon and amino acid specificities of tRNAIle. We identified an enzyme named Accepted 24 November 2009 tRNAIle lysidine synthetase (TilS) that catalyzes lysidine formation by using lysine and ATP as sub- Available online 26 November 2009 strates. Biochemical studies revealed a molecular mechanism of lysidine formation that consists Edited by Manuel Santos of two consecutive reactions involving the adenylated tRNA intermediate. In addition, we deci- phered how Escherichia coli TilS specifically discriminates between tRNAIle and the structurally sim- ilar tRNAMet, which bears the same anticodon loop. Recent structural studies unveiled tRNA Keywords: tRNA recognition by TilS, and a molecular basis of lysidine formation at atomic resolution. Lysidine Ó 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. TilS AUA codon Wobble modification Anticodon 1. Lysidine plays a critical role in decoding the AUA codon as Ile tRNAIle bearing the CAU anticodon was switched to Met, and this tRNA translates the AUG codon as Met [4].
    [Show full text]
  • Studies of Intracellular Transport and Anticancer Drug Action by Functional Genomics in Yeast
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 402 Studies of intracellular transport and anticancer drug action by functional genomics in yeast MARIE GUSTAVSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 UPPSALA ISBN 978-91-554-7360-0 2008 urn:nbn:se:uu:diva-9408 Dissertation presented at Uppsala University to be publicly examined in C10:301, BMC, Husargatan 3, Uppsala, Tuesday, December 16, 2008 at 13:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in Swedish. Abstract Gustavsson, M. 2008. Studies of intracellular transport and anticancer drug action by functional genomics in yeast. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 402. 56 pp. Uppsala. ISBN 978-91-554-7360-0. This thesis describes the use of functional genomics screens in yeast to study anticancer drug action and intracellular transport. The yeast Saccharomyces cerevisiae provides a particularly useful model system for global drug screens, due to the availability of knockout mutants for all yeast genes. A complete collection of yeast deletion mutants was screened for sensitivity to monensin, a drug that affects intracellular transport. A total of 63 deletion mutants were recovered, and most of them were in genes involved in transport beyond the Golgi. Surprisingly, none of the V-ATPase subunits were identified. Further analysis showed that a V-ATPase mutant interacts synthetically with many of the monensin-sensitive mutants. This suggests that monensin may act by interfering with the maintenance of an acidic pH in the late secretory pathway. The second part of the thesis concerns identification of the underlying causes for susceptibility and resistance to the anticancer drug 5-fluorouracil (5-FU).
    [Show full text]
  • Agmatidine, a Modified Cytidine in the Anticodon of Archaeal Trna , Base
    Agmatidine, a modified cytidine in the anticodon of archaeal tRNAIle, base pairs with adenosine but not with guanosine Debabrata Mandala,1, Caroline Köhrera,1, Dan Sub, Susan P. Russellc, Kady Krivosc, Colette M. Castleberryc, Paul Blumd, Patrick A. Limbachc, Dieter Söllb, and Uttam L. RajBhandarya,2 aDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; cDepartment of Chemistry, University of Cincinnati, Cincinnati, OH 45221; dGeorge Beadle Center for Genetics, University of Nebraska, Lincoln, NE 68588 Contributed by Dieter Söll, December 24, 2009 (sent for review December 2, 2009) Modification of the cytidine in the first anticodon position of the Eukaryotes, on the other hand, contain a tRNAIle with the anti- Ile Ile AUA decoding tRNA (tRNA2 ) of bacteria and archaea is essential codon IAU (I ¼ inosine), which can read all three isoleucine co- for this tRNA to read the isoleucine codon AUA and to differentiate dons using the wobble pairing rules of Crick. They also contain a between AUA and the methionine codon AUG. To identify the tRNAIle with the anticodon ΨAΨ, which is thought to read only modified cytidine in archaea, we have purified this tRNA species the isoleucine codon AUA but not the methionine codon AUG from Haloarcula marismortui, established its codon reading proper- (8). Given these two distinct mechanisms in bacteria and ties, used liquid chromatography–mass spectrometry (LC-MS) to eukaryotes, a question of much interest is how the archaeal map RNase A and T1 digestion products onto the tRNA, and used tRNAIle accomplishes the task of reading the AUA codon.
    [Show full text]
  • Designing Minimal Genomes Using Whole-Cell Models
    ARTICLE https://doi.org/10.1038/s41467-020-14545-0 OPEN Designing minimal genomes using whole-cell models ✉ Joshua Rees-Garbutt1,2,7, Oliver Chalkley1,3,4,7, Sophie Landon1,3, Oliver Purcell5, Lucia Marucci1,3,6,8 & ✉ Claire Grierson1,2,8 In the future, entire genomes tailored to specific functions and environments could be designed using computational tools. However, computational tools for genome design are 1234567890():,; currently scarce. Here we present algorithms that enable the use of design-simulate-test cycles for genome design, using genome minimisation as a proof-of-concept. Minimal gen- omes are ideal for this purpose as they have a simple functional assay whether the cell replicates or not. We used the first (and currently only published) whole-cell model for the bacterium Mycoplasma genitalium. Our computational design-simulate-test cycles discovered novel in silico minimal genomes which, if biologically correct, predict in vivo genomes smaller than JCVI-Syn3.0; a bacterium with, currently, the smallest genome that can be grown in pure culture. In the process, we identified 10 low essential genes and produced evidence for at least two Mycoplasma genitalium in silico minimal genomes. This work brings combined computational and laboratory genome engineering a step closer. 1 BrisSynBio, University of Bristol, Bristol BS8 1TQ, UK. 2 School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK. 3 Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK. 4 Bristol Centre for Complexity Science, Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.
    [Show full text]
  • Mapping Post-Transcriptional Modifications Onto Transfer
    Review Mapping Post‐Transcriptional Modifications onto Transfer Ribonucleic Acid Sequences by Liquid Chromatography Tandem Mass Spectrometry Robert L. Ross, Xiaoyu Cao and Patrick A. Limbach * Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221‐0172, USA; [email protected] (R.L.R.); [email protected] (X.C.) * Correspondence: [email protected]; Tel.: +1‐513‐556‐1871 Academic Editor: Jürg Bähler Received: 30 December 2016; Accepted: 15 February 2017; Published: 22 February 2017 Abstract: Liquid chromatography, coupled with tandem mass spectrometry, has become one of the most popular methods for the analysis of post‐transcriptionally modified transfer ribonucleic acids (tRNAs). Given that the information collected using this platform is entirely determined by the mass of the analyte, it has proven to be the gold standard for accurately assigning nucleobases to the sequence. For the past few decades many labs have worked to improve the analysis, contiguous to instrumentation manufacturers developing faster and more sensitive instruments. With biological discoveries relating to ribonucleic acid happening more frequently, mass spectrometry has been invaluable in helping to understand what is happening at the molecular level. Here we present a brief overview of the methods that have been developed and refined for the analysis of modified tRNAs by liquid chromatography tandem mass spectrometry. Keywords: modified nucleosides; RNA sequencing; tRNA; tandem mass spectrometry; LC‐MS/MS 1. Transfer Ribonucleic Acids Transfer ribonucleic acids (tRNAs) are the smallest of the three main types of RNAs. They are an adapter molecule, which bridges the divide between the genetic code stored in DNA to functional proteins that are necessary for cellular viability.
    [Show full text]
  • Characterization of UVA-Induced Alterations to Transfer RNA Sequences
    biomolecules Article Characterization of UVA-Induced Alterations to Transfer RNA Sequences Congliang Sun, Patrick A. Limbach and Balasubrahmanyam Addepalli * Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA; [email protected] (C.S.); [email protected] (P.A.L.) * Correspondence: [email protected] Received: 15 September 2020; Accepted: 5 November 2020; Published: 8 November 2020 Abstract: Ultraviolet radiation (UVR) adversely affects the integrity of DNA, RNA, and their nucleoside modifications. By employing liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based RNA modification mapping approaches, we identified the transfer RNA (tRNA) regions most vulnerable to photooxidation. Photooxidative damage to the anticodon and variable loop regions was consistently observed in both modified and unmodified sequences of tRNA upon UVA (λ 370 nm) exposure. The extent of oxidative damage measured in terms of oxidized guanosine, however, was higher in unmodified RNA compared to its modified version, suggesting an auxiliary role for nucleoside modifications. The type of oxidation product formed in the anticodon stem–loop region varied with the modification type, status, and whether the tRNA was inside or outside the cell during exposure. Oligonucleotide-based characterization of tRNA following UVA exposure also revealed the presence of novel photoproducts and stable intermediates not observed by nucleoside analysis alone. This approach provides sequence-specific information revealing potential hotspots for UVA-induced damage in tRNAs. Keywords: UVR; photooxidation; tRNA; post-transcriptional nucleoside modifications; cusativin; RNA modification mapping; RNA oxidation 1. Introduction Transfer RNAs (tRNAs) deliver amino acids to the site of ribosome-mediated protein synthesis while decoding the messenger RNA (mRNA).
    [Show full text]