United States Patent Office Patented May 6, 1958 1 2 Ions Would Be in the Order of the Positive Charge

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented May 6, 1958 1 2 Ions Would Be in the Order of the Positive Charge 2,833,612 United States Patent Office Patented May 6, 1958 1 2 ions would be in the order of the positive charge. In other words, the positive ions of an alkaline earth com pound, which carry two positive charges, would be more 2,833,612 effective than the alkali metal halide used in the prior RESTORATION OF FADED NK WRITINGS 5 practice. However, according to my experience the addi Lloyd H. Almy, Pittsburgh, Pa., assignor to tion of mono-, di- and tri-valent metallic chlorides to solu Carl E. Hultman, Pittsburgh, Pa. tions made in accordance with the foregoing patent gives no evidence that increased basicity of the cations gives No Drawing. Application July 22, 1957 increased protection against edge blurring. Furthermore, Serial No. 673,135 O in past practice under the said patent NaCl has been used in such amount that it is present in the ratio of 300 10 Claims. (CI. 8-7) or more parts to one part of FeCls, where HCl is used as the acid, yet edge blurring occurs. That concentra tion of sodium ions should be sufficient to precipitate the This invention relates to a method of restoring faded Prussian blue but it does not so that neutralization of the Writing made with iron inks, and this application is a charge is not alone enough to avoid edge blurring. continuation-in-part of my copending application Serial Although not confining myself to any particular theory No. 424,249, filed April 19, 1954. - as to the action of the soluble alkaline earth salt, I now it is well known that writings made with iron inks such, believe that it acts to suppress edge blurring by forming for example, as iron-tannin inks, fade with the passage 20 a modified Prussian blue in which a portion of the iron of time due presumably, to oxidation of the iron of the is replaced by alkaline earth metal. For instance, it is ink to ferric oxide (Fe2O3). Patent No. 2,182,672 de known that there is a potassium calcium ferrocyanide scribes and claims a method of restoring such faded IKCaFe(CN)6] which is sparingly soluble (Thorpe's Writings in accordance with which the paper bearing the Dictionary of Applied Chemistry, 4th ed., vol. III, p. Writing is treated with an acidified aqueous solution of an 2 5 468 ff.). Whether or not the alkaline earth cation present alkali metal halide, e. g., sodium chloride (NaCl), and in the treating baths of this invention replaces a portion potassium ferrocyanide (KFe(CN)6) after which the of the alkali metal of normal sodium or potassium ferro paper is washed and then subjected to the action of a cyanide, which in turn reacts with the iron of the ink used solution of a compound, such as zinc chloride (ZnCl2), in the writing to form a less soluble "Prussian blue' con to precipitate residual potassium ferrocyanide as an in 30 taining combined alkaline earth in the molecule tests that soluble and stable substance of color contrasting to that I have conducted have shown that when Prussian blue is of the revived ink characters, after which the paper is precipitated from solutions used in practicing the method again Washed and then dried. of the foregoing patent to which there has been added a The method of that patent has been used extensively soluble calcium or a soluble barium salt, the precipitate over the years, but although it does act to restore the after thorough washing shows a fixation of the alkaline ink characters successfully, experience has shown that at earth metal. times the restored characters show edge blurring, where In the practice of this invention there is used, as in fore the appearance is impaired. Although the exact rea the past, an aqueous solution of an alkali metal ferro son for such blurring is not known definitely, it may be cyanide, such, for example, as sodium or potassium ferro due to migration of the Prussian blue formed by the treat 40 cyanide, although the potassium compound is preferred ment with alkali metal ferrocyanide, or it may be due to for most purposes. The exact concentration is not critical, the formation of a slightly soluble modification of Prus and as little as 0.1 percent by weight may be used. sian blue, or to other factors. There is no practical upper limit so that higher concen it is among the objects of this invention to provide an trations may be used, if desired, although in general that improved method of restoring faded iron ink writings is economically undesirable since low concentrations suf with an acidic aqueous solution of a soluble alkali metal fice. For many purposes it is preferred to use about 0.3 ferrocyanide and an alkali metal halide that satisfactorily percent. restores the brilliance and legibility of the ink characters The solution likewise contains an alkali metal halide, while Suppressing edge blurring, that dispenses with the suitably potassium or sodium chloride (KCl or NaCl). precipitating step of the aforesaid patented method, and 50 The halide, serves chiefly for its mass action effect in that is rapid and easily performed. forcing the revivifying reaction in the desired direction so A further object is to restore without edge blurring that provided enough is present for that action its con faded iron ink writings by means of aqueous acidic cal centration is not critical. In the case of sodium chloride, cium or bariuin ferrocyanide, in which the use of alkali about 5 percent by weight suffices. metal halide is not needed. The solution contains an acid also, which is believed Other objects will be recognized from the following to function to neutralize any alkalinity of the water used specification. - and to solubilize the iron of the writing for reaction to The invention is predicated in part upon my discovery form Prussian blue with the ferrocyanide. The common that in the use of solutions containing an alkali metal mineral acids such as hydrochloric (HCl), sulfuric ferrocyanide, an acid, and an alkali metal halide for ink 60 (HSO), nitric (HNO3), and phosphoric (H3PO), and restoring, edge blurring of the characters is suppressed others may be used. Organic acids may be used likewise, satisfactorily by including in the solution a soluble alkaline exampies of the latter class being formic (HCOOH), ace earth salt. Not only is edge blurring thus no longer a tic (CH3COOH), chloracetic (CHCICOOH), succinic problem, but also, as has been found by experience, it is (COOH. (CH2)2COOH), and others. The amount of no longer necessary after washing the treated paper to acid present will, obviously, depend upon the particular use the precipitation agent of the aforesaid patent. acid used, but enough is to be present to neutralize any The reason why edge blurring is suppressed in this way alkalinity of the water used in preparing the solution and by the inclusion of a soluble alkaline earth salt in the to effect solubilization of the iron in the faded written revivifying solution is not known with certainty. It might characters. The acid used must, of course, be one that be thought that since Prussian blue is a negative lyophobic 70 is compatible with other ions present, e. g. it should not sol its charge will be neutralized by ions supplying posi form a precipitate with such other ions, and in the case of tive charges, and that the effectiveness of such positive organic acids they should not develop a pH such that 2,838,612 3 s 4. the irons will not be solubilized. The concentration is, of case the presence of an alkali metal salt and of a sub course, insufficient" to injure the paper. As an example, sequent precipitation step are unnecessary. in the case of hydrochloric acid of customary laboratory According to the provisions of the patent statutes, I strength, the addition of about 0.2 percent by weight of have explained the principle of my invention and have the acid suffices for most purposes. described what I now consider to represent its best em The major feature of the invention is that there is added bodiment. However I desire to have it understood that, to such a solution at least one soluble salt of calcium within the scope of the appended claims, the invention or barium. It is preferred to use the chlorides (CaCl; may be practiced otherwise than as specifically described. BaCl) although other halides such as the bromides I claim: (CaBr; BaBr) or iodides (Ca, Bal) may be used. 10 1. In a method of restoring faded writings made from Other soluble salts of these alkaline earth metals may iron ink susceptible to oxidation with consequent color be used likewise for example, such as the nitrates fading in which the writing is treated with an aqueous (Ca(NOs); Ba(NO3)2), the thiocyanates. (Ca(SCN); solution of an alkali metal ferrocyanide of the group Ba(SCN),), the chlorates. (Ca(CO3); Ba(CIO)). consisting of NaFe(CN) and KFe(CN)6 containing Here again the exact concentration is not critical although 15 acid and an alkali metal halide, the improvement consist for most purposes from about 0.5 percent to as much as ing in adding in said solution an ionizable soluble alka 20 percent by weight may be used. Of course, for econ line earth salt. omy the lowest effective amount will be used. 2. In a method of restoring faded writings made from Although the calcium and barium salts, are preferred, iron ink-susceptible to oxidation with consequent color soluble salts of strontium (Sr) and magnesium (Mg) 20 fading in which the writing is treated with an aqueous may be used although, according to my experience, they solution of an alkali metal ferrocyanide of the group con are less satisfactory, in general than the Ca and Ba salts.
Recommended publications
  • Halide Metathesis in Overdrive: Mechanochemical Synthesis of a Heterometallic Group 1 Allyl Complex
    Halide metathesis in overdrive: mechanochemical synthesis of a heterometallic group 1 allyl complex Ross F. Koby1, Nicholas R. Rightmire1, Nathan D. Schley1, Timothy P. Hanusa*1 and William W. Brennessel2 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2019, 15, 1856–1863. 1Department of Chemistry, Vanderbilt University, PO Box 1822, doi:10.3762/bjoc.15.181 Nashville, TN 37235, USA and 2X-ray Crystallographic Facility, B51 Hutchison Hall, Department of Chemistry, University of Rochester, Received: 01 March 2019 Rochester, NY 14627, USA Accepted: 18 July 2019 Published: 02 August 2019 Email: Timothy P. Hanusa* - [email protected] This article is part of the thematic issue "Mechanochemistry II". * Corresponding author Guest Editor: J. G. Hernández Keywords: © 2019 Koby et al.; licensee Beilstein-Institut. caesium; entropy; intermolecular forces; mechanochemistry; License and terms: see end of document. metathesis; potassium Abstract As a synthesis technique, halide metathesis (n RM + M'Xn → RnM' + n MX) normally relies for its effectiveness on the favorable formation of a metal halide byproduct (MX), often aided by solubility equilibria in solution. Owing to the lack of significant thermodynamic driving forces, intra-alkali metal exchange is one of the most challenging metathetical exchanges to attempt, espe- cially when conducted without solvent. Nevertheless, grinding together the bulky potassium allyl [KA']∞ (A' = [1,3- – (SiMe3)2C3H3] ) and CsI produces the heterometallic complex [CsKA'2]∞ in low yield, which was crystallographically character- ized as a coordination polymer that displays site disorder of the K+ and Cs+ ions. The entropic benefits of mixed Cs/K metal … … centers, but more importantly, the generation of multiple intermolecular K CH3 and Cs CH3 interactions in [CsKA'2]∞, enable an otherwise unfavorable halide metathesis to proceed with mechanochemical assistance.
    [Show full text]
  • Periodic Trends and the S-Block Elements”, Chapter 21 from the Book Principles of General Chemistry (Index.Html) (V
    This is “Periodic Trends and the s-Block Elements”, chapter 21 from the book Principles of General Chemistry (index.html) (v. 1.0M). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/) license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms. This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz (http://lardbucket.org) in an effort to preserve the availability of this book. Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header). For more information on the source of this book, or why it is available for free, please see the project's home page (http://2012books.lardbucket.org/). You can browse or download additional books there. i Chapter 21 Periodic Trends and the s-Block Elements In previous chapters, we used the principles of chemical bonding, thermodynamics, and kinetics to provide a conceptual framework for understanding the chemistry of the elements. Beginning in Chapter 21 "Periodic Trends and the ", we use the periodic table to guide our discussion of the properties and reactions of the elements and the synthesis and uses of some of their commercially important compounds.
    [Show full text]
  • Single Crystal X-Ray Structure Analyses of Thallides: Halide Incorporation and Mixed Alkali Sites in A8tl11x (A = K, Rb, Cs; X = Cl, Br) †
    Proceedings Single Crystal X-ray Structure Analyses of Thallides: Halide Incorporation and Mixed Alkali Sites in A8Tl11X (A = K, Rb, Cs; X = Cl, Br) † Stefanie Gärtner 1,2,* and Susanne Tiefenthaler1 1 Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany; [email protected] 2 Central Analytics (X-Ray Dept.), University of Regensburg, 93040 Regensburg, Germany * Correspondence: [email protected]; Tel.: +49-941-943-4446 † Presented at the 1st International Electronic Conference on Crystals, 21–31 May 2018. Available online: https://sciforum.net/conference/IECC_2018. Published: 21 May 2018 Abstract: A8Tl11 (A = alkali metal) compounds have been known since the investigations of Corbett et al. in 1995 and still are matter of current discussions as the compound includes one extra electron referred to the charge of the Tl117− cluster. Attempts to substitute the charge by incorporation of a halide atom succeeded for the lightest homologue of the group, Cs8Ga11Cl, and powder diffraction experiments for the heavier homologues also suggested the formation of analogous compounds. However, X-ray single crystal studies on A8Tl11X to prove this substitution and to provide a deeper insight into the influence on the thallide substructure have not yet been performed, probably due to severe absorption combined with air and moisture sensitivity for this class of compounds. In our contribution we present single crystal X-ray analyses of the new compounds Cs8Tl11Cl0.8, Cs8Tl11Br0.9 and Cs5Rb3Tl11Cl0.5. It is shown that a (partial) incorporation of halide can also be indirectly determined by examination of the Tl-Tl distances for low resolved data sets, e.g., for Cs5.7K2.3Tl11Cl?.
    [Show full text]
  • Substituted Polythiophenes from Highly Reactive Zinc Reagents
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications -- Chemistry Department Published Research - Department of Chemistry 1998 SUBSTITUTED POLYTHIOPHENES FROM HIGHLY REACTIVE ZINC REAGENTS Reuben D. Rieke Follow this and additional works at: https://digitalcommons.unl.edu/chemfacpub Part of the Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Other Chemistry Commons This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications -- Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. USO05756653A United States Patent 19 11 Patent Number: 5,756,653 Rieke 45 Date of Patent: May 26, 1998 54 SUBSTITUTED POLYTHIOPHENES FROM J.K. Gawronski, Tetrahedron Letters, 25, 2605 (1984). HGHLY REACTWE ZNC REAGENTS J. Grondin et al., J. Organomet. Chem, 362. 237 (1989). J.J. Habeeb et al., J. Organomet. Chem, 185, 117 (1980). 75) Inventor: Reuben D. Rieke, Lincoln, Nebr. B.H. Han et al., J. Org. Chem, 47, 5030 (1982). B.H. Han et al., J. of the Korean Chemical Society, 29,557 73) Assignee: Board of Regents of the University of (1985). Nebraska, Lincoln, Nebr. S.M. Hannicket al., J. Org. Chem, 48, 3833 (1983). S. W. Hansen et al., J. Fluorine Chem., 35, 415 (1987). 21 Appl. No.: 432,995 P.L. Heinze et al., J. Fluorine Chem., 31. 115 (1986). M. Isobe et al., Chem. Lett, 679 (1977). 22 Filed: May 2, 1995 R.A. Kjonaas et al., J. Org. Chem, 51,3993 (1986).
    [Show full text]
  • ESR of Alkali Metal Dinitrobenzene Salts in Dimethoxyetbane DME*
    400 LETTERS TO THE EDITOR J. CHEM. PHYS., VOL. 46, 1967 atoms give 38, of which six must be used for the to 0.18 G at -50°C. The potassium splitting decreases halogens leaving 32 for the metallic cluster. from 0.21 to 0.13 G, and the cesium splitting from 2.46 From the agreement between theory and observa­ to 2.04 G, over this temperature range. We have ob­ tion the conclusion is drawn that "electron in a box" served a similar temperature dependence for the alkali theory can be useful in understanding metal atom metal salts of o-dinitrobenzene and nitrobenzene. In clusters, its simplicity being particularly attractive. addition, for each alkali metal, the metal hyperfine splitting is of the same magnitude in the salts of '" This research was supported by the Chemical Directorate of the U.S. Air Force Office of Scientific Research, Grant No. m-dinitrobenzene, o-dinitrobenzene, and nitrobenzene. AF-AFOSR-245-65. On cooling the Cs salt, the hyperfine lines broaden, 1 F. A. Cotton and T. E. Haas, Inorg. Chern. 3,10 (1964). and at - 60°C a small nitrogen splitting of about 0.25 G 2 R. V. Lindsey, Jr., G. W. Parshall, and U. G. Stolberg, Inorg. Chern. 5, 109 (1966). can be resolved. The other nitrogen splitting is now 8.9 G, and even though two inequivalent nitrogens are observed at -60°C, we still observe an equivalent pair ESR of Alkali Metal Dinitrobenzene Salts of protons. in Dimethoxyetbane DME* Cation motion from one nitro group to the other, or cation motion which rotates the nitro groups in and Cm-YUAN LING AND JULIEN GENDELL out of the molecular plane, could account for these Department of Chemistry, University of Michigan facts.
    [Show full text]
  • Structural Evaluation and Solution Integrity of Alkali Metal Salt Complexes of the Manganese 12-Metallacrown-4 (12-MC-4) Structural Type
    6184 Inorg. Chem. 1996, 35, 6184-6193 Structural Evaluation and Solution Integrity of Alkali Metal Salt Complexes of the Manganese 12-Metallacrown-4 (12-MC-4) Structural Type Brian R. Gibney,† Hsin Wang, Jeff W. Kampf, and Vincent L. Pecoraro* Willard H. Dow Laboratories, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 ReceiVed April 4, 1996X The preparation of a variety of salt complexes of [12-MCMn(III)N(shi)-4] (1) provides the structural basis for the first quantitative investigation of the cation and anion selectivity of metallacrowns. The preparation, X-ray crystal - - structures, and solution integrities of crystalline salts (LiCl2)[12-MCMn(III)N(shi)-4] ([(LiCl2)‚1] ), (Li(trifluoro- + + acetate))[12-MCMn(III)N(shi)-4] ([(LiTFA)‚1]), (Li)[12-MCMn(III)N(shi)-4] ([(Li)‚1] ), (NaBr)2[12-MCMn(III)N(shi)-4] ([(NaBr)2‚1]), and (KBr)2[12-MCMn(III)N(shi)-4] ([(KBr)2‚1]) of the metallacrown [12-MCMn(III)N(shi)-4] (1) are described. Each salt complex of the metallacrown forms from a generic one-step, high-yield synthesis giving 1:1 metal:metallacrown adducts with lithium and 2:1 metal:metallacrown complexes with sodium and potassium ions. On the basis of synthetic preference, the trend for the cation affinity is Li+ > Na+ > K+ and that for anion - - - - - affinity is Cl > Br > TFA > F I3 . The 12-metallacrown-4 structural parameters compare favorably with those of 12-crown-4, an organic crown≈ ether, as well as with those of the topologically similar alkali metal complexes of porphyrin and phthalocyanine dianions, solidifying the structural analogy between metallacrowns and crown ethers.
    [Show full text]
  • Structural Chemistry of Halide Including Thallides A8tl11x1− N
    crystals Article Structural Chemistry of Halide including Thallides A8Tl11X1−n (A = K, Rb, Cs; X = Cl, Br; n = 0.1–0.9) Stefanie Gärtner 1,2,* ID , Susanne Tiefenthaler 1, Nikolaus Korber 1 ID , Sabine Stempfhuber 2 and Birgit Hischa 2 1 Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany; [email protected] (S.T.); [email protected] (N.K.) 2 Central Analytics, X-ray Crystallography Dept., University of Regensburg, 93040 Regensburg, Germany; [email protected] (S.S.); [email protected] (B.H.) * Correspondence: [email protected]; Tel.: +49-941-943-4446 Received: 23 July 2018; Accepted: 7 August 2018; Published: 10 August 2018 Abstract: A8Tl11 (A = alkali metal) compounds have been known since the investigations of Corbett et al. in 1995 and are still a matter of current discussions as the compound includes one extra 7− electron referred to the charge of the Tl11 cluster. Attempts to substitute this additional electron by incorporation of a halide atom succeeded in the preparation of single crystals for the lightest triel homologue of the group, Cs8Ga11Cl, and powder diffraction experiments for the heavier homologues also suggested the formation of analogous compounds. However, X-Ray single crystal studies on A8Tl11X to prove this substitution and to provide a deeper insight into the influence on the thallide substructure have not yet been performed, probably due to severe absorption combined with air and moisture sensitivity for this class of compounds. Here, we present single crystal X-Ray structure analyses of the new compounds Cs8Tl11Cl0.8, Cs8Tl11Br0.9, Cs5Rb3Tl11Cl0.5, Cs5.7K2.3Tl11Cl0.6 and K4Rb4Tl11Cl0.1.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,730,210 B2 Thompson Et Al
    USOO673021 OB2 (12) United States Patent (10) Patent No.: US 6,730,210 B2 Thompson et al. (45) Date of Patent: May 4, 2004 (54) LOW TEMPERATURE ALKALI METAL GB 3.71946 5/1932 ELECTROLYSIS GB 732906 6/1955 JP 5104.0041 B 4/1976 (75) Inventors: Jeffery S. Thompson, Wilmington, DE E. : A sE. (US); Howard M. Blank, Wilmington, JP 57OO7438 A 1/1982 DE (US); Walter John Simmons, JP 04.0881.88 A 3/1993 Martinsburg, WV (US); Oswald Robert Bergmann, Wilmington, DE (US) OTHER PUBLICATIONS Sodium. Its Manufacture. Properties and Uses, bv. Marshall (73)73) ASSignee : CompE. I. du Any Pont ". d Nine, y,d Sittig, Americans Chemical, PropSociety Monograph ,Series, Dy Rein s s hold Publishing Corp., New York (1956) (Book, not sub (*) Notice: Subject to any disclaimer, the term of this mitted). No month avail. patent is extended or adjusted under 35 Electrochemical Engineering, by C.L. Mantell, U.S.C. 154(b) by 138 days. McGraw-Hill Book Co., Inc., New York, Toronto, London (1960) (Book, not submitted). No month avail. Plating and Stripping of Sodium from a Room Temperature (21) Appl. No.: 10/046,485 1,2-Dimethyl-3-propylimidazolium Chloride Melt, J. Elec (22) Filed: Jan. 14, 2002 trochem. Soc. vol. 143, No. 7, pp. 2262-2266, Jul. 1996. O O Room-temperature Ionic liquids. Solvents for Synthesis and (65) Prior Publication Data catalysis, Thomas Welton, Chemical Reviews, 99, US 2002/0088719 A1 Jul. 11, 2002 2071-2083 (1999). No month avail. Room Temperature Inorganic “Quasi-Molten Salts' as Related U.S.
    [Show full text]
  • United States Patent "Lee
    2,974,007 United States Patent "lee . _ V Patented Mar. 7,1961‘, 1 “ I, 2 sure. The reaction is advantageously carried out with the exclusion of moisture ‘in an inert atmosphere, for 2,974,001 example, under nitrogen or carbon dioxide.‘ The reac PROCESS FOR THE RECOVERY OF NIOBIUM tion must, of course, be carried out at a temperature AND/OR TANTALUM FROM MIXTURES ‘OF below the decomposition temperature of the double salt THEIR PENTAHALIDES formed, that is to say, at‘ a temperature below about Walter ‘Scheller, Neuewelt, near Basel, Switzerland, 500° C. The speed of the reaction is fairly high at assignor to Ciba Limited, Basel,‘ Switzerland temperatures above about 300° C. It is possible to work at temperatures above 500° C., that is to say up to about No Drawing. Filed Nov. 8, 1957, Ser. No. 695,213 900° C., if the reaction is carried out under 'superatmos Claims priority, application Switzerland Nov. 13, 1956 pheric pressure, so that thedecomposition temperature of the double salt is correspondingly raised. Thus,‘ the 14 Claims. (Cl. 23-'-21) pentachloride mixture may be reacted in an apparatus, which ‘may have been previously evacuated, with ?nely This invention provides a process for the recovery of 15 powdered dry potassium chloride, which may be diluted the anhydrous halides of niobium and tantalum from with an inert solid diluent such as carbon, and advan mixtures of their pentahalides, in which a relatively pure tageously while mechanically moving the mixture. In tantalum fraction or niobium fraction is obtained and the stead of potassium chloride, there may be used a mixture _N‘*44——————44a4*<444.
    [Show full text]
  • United States Patent Office E 8
    United States Patent Office e 8. P t t 8 d s ep t. 6, 9 C 2 The addition compounds of phosphorus oxychloride 2,951,742 with niobium pentachloride and/or tantalum pentachlo PROCESS FOR THE RECOVERY OF METAL ride so obtained are solid compounds at ordinary tem HALDES FROM THER ADDUCTSWTH perature, which have lower melting points than those PHOSPHORUs oxYCHLORIDE of the pentachlorides used as starting materials. The constitution of the addition products has not been fully Waitersigao Scheier,to Ciba Neuewel, Limited, nearBasel, Basel, Switzerlaid, Switzerland, a Swiss as ascertained. However, analysis, has shown that there fina are formed, inter alia, 1:1-adducts of the metal penta chlorides with phosphorus oxychloride. The adducts are No Drawing. Filed Nov. 8, 1957, Ser. No. 695,229 O generally prepared industrially from mixtures of chlori Ciains priority, application Switzerland Nov. 13, 1956 nation products which are obtained, for example, by the chlorination of materials which contain niobium and 18 Claims. (C. 23-87) tantalum in oxidised form, for example, slags or espe cially concentrates or- ores, which may be after-treated This invention provides a process for the recovery 5 for the purpose of enrichment, or by the chlorination of of metal halides, especially chlorides of metals of the a mixtures of oxides of the aforesaid metals. The chlori fifth group of the periodic system, by splitting adducts nation of the aforesaid materials is carried out with of the metal halides with phosphorus oxychloride. chlorine gas and a reducing agent, such as carbon, or In patent application No.
    [Show full text]
  • Highly Reactive Zerovalent Metals from Metal Cyanides
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications -- Chemistry Department Published Research - Department of Chemistry 1996 HIGHLY REACTIVE ZEROVALENT METALS FROM METAL CYANIDES Reuben D. Rieke Follow this and additional works at: https://digitalcommons.unl.edu/chemfacpub Part of the Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Other Chemistry Commons This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications -- Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. |||||||||| USOO5507973A United States Patent (19) 11) Patent Number: 5,507,973 Rieke 45) Date of Patent: *Apr. 16, 1996 (54) HIGHLY REACTIVE ZEROVALENT METALS H. Xiong, "Chemistry of Conjugated Diene-Magnesium FROM METAL CYANDES Reagents: A Novel Approach to Cyclic and Functionalized Molecules', Ph.D. Thesis, The University of Nebraska-Lin 75 Inventor: Reuben D. Rieke, Lincoln, Nebr. coln (1992). L. S. Zhu, “The Preparation of Novel Organozinc Reagents 73) Assignee: Board of Regents of the University of Using Highly Reactive Zinc', Ph.D. Thesis, The University Nebraska, Lincoln, Nebr. of Nebraska-Lincoln (1991). Abstract of the National Institute of Health Grant No. (*) Notice: The term of this patent shall not extend GM35153 (1992). beyond the expiration date of Pat. No. K. J. Klabunde et al., J. Org. Chem, 44,3901-3908 (1979). 5,358,546. P. Knochel et al., J. Org. Chem, 53, 2390-2392 (1988). B. E. Lenk, M.S. Thesis, University of Nebraska, Lincoln, 21 Appl. No.: 893,501 Nebraska, 1988.
    [Show full text]
  • Process for the Preparation of Halogenated Hydrocarbons Which Are Useful As Insecticide Intermediates
    Europaisches Patentamt 022 607 (19) European Patent Office (lî) Publication number: 0 Office européen des brevets Bl EUROPEAN PATENT SPECIFICATION (45) Date of publication of patent spécification: 1 2.01 .83 © Int. Cl 3: C07 C 21/14, C07 C 21/04, C 07 C 17/34 @ Application number: 80301417.4 (22) Date offiling: 30.04.80 @ Process for the préparation of halogenated hydrocarbons. (30) Priority: 13.07.79 GB 7924524 @ Proprietor: IMPERIAL CHEMICAL INDUSTRIES PLC Impérial Chemical House Millbank @ Date of publication of application: LondonSW1P3JF(GB) 21.01.81 Bulletin 81/3 (72) Inventor: Crosby. John @ Publication of the grantof the patent: 12 Oakwood Court 12.01.83 Bulletin 83/2 Bowdon, Altrincham Cheshire WA143DJ (GB) Inventor: Milner, David John 1 8 Eight Acre (84) Designated Contracting States: Whitefield, Manchester M25 7LW (GB) CH DE FR GB IT Ll NL Inventor: Terry, Bernard William Hugh 188 Blackley New Road Blackley Manchester M9 3FQ (GB) (56) Références cited: US- A-3 116337 US-A-4070 404 @ Représentative: Clark, Peter Frederick et al. Impérial Chemical Industries PLC Légal Department, Patents Thames House North Millbank London SW1 K P 4QG (GB) O CH CH O Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. it shall not be deemed to have been filed until the opposition fee has been CL paid. (Art. 99(1 ) European patent convention).
    [Show full text]