The Crustal Deformation of the Ilan Plain Acted As a Westernmost

Total Page:16

File Type:pdf, Size:1020Kb

The Crustal Deformation of the Ilan Plain Acted As a Westernmost Available online at www.sciencedirect.com Tectonophysics 466 (2009) 344–355 www.elsevier.com/locate/tecto The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough ⁎ Chin-Shyong Hou a,b, Jyr-Ching Hu b, , Kuo-En Ching c, Yue-Gau Chen b, Chien-Liang Chen a, Li-Wei Cheng a, Chao-Lung Tang b, Shin-Hua Huang b, Ching-Hua Lo b a Central Geological Survey, MOEA, P.O. Box 968, Taipei, Taiwan b Department of Geosciences, National Taiwan University, Taipei, Taiwan c Department of Geosciences, National Taiwan University, Taiwan Available online 22 November 2007 Abstract We analyze the current deformation in Ilan Plain of northeastern Taiwan considered as the western extension of Okinawa Trough based on 34 geodetic sites observed between 2002 and 2006. The station velocities are between 1.9 mm/yr and 43.0 mm/yr in a direction between 38 ° and 143 ° relative to stable continent margin of Eurasian plate. This largest velocity is moving southeastward (143 °) at a rate of ~43 mm/yr was enhanced by a seismic doublet that occurred on March 6, 2005. The station velocities at the northern margin of Ilan Plain are insignificant with a magnitude of ~1.9 mm/yr to ~7.5 mm/yr. On the contrary, the station velocities increase approximately southward along the southern margin of Ilan Plain. The stations are moving roughly E–W with a magnitude of ~5.8 mm/yr to ~21.8 mm/yr. Further southward, the station velocities increase to a value of ~43.0 mm/yr in a direction of 143 °. The most prominent feature of the strain distribution patterns in Ilan Plain are the remarkable extensional strain rates observed in central and southern flank of the Ilan Plain. The largest extensional rate is found (2.66 μstrain/yr in 147°) with a shortening rate in the perpendicular direction (1.28 μstrain/yr in 57°), indicating transtensional deformation mode. In the northeastern flank of Ilan Plain, insignificant or minor deformations are observed. Overall the extensional rates in this area clearly increase from north to south. The extension directions in study area mostly trend E–WtoNW–SE directions. Using the velocity field of 34 GPS stations and its strain rate filed, we suggest the lateral extrusion process towards mechanically weak domain adjacent Ryukyu subduction zone. The lateral extrusion is facilitated by the opening of the Okinawa Trough. We conclude that the northeast Taiwan is subjected to both the compressional force exerted by the indentation of Philippine Sea plate and the tensile force induced by trench retreat related to the suction force at the Ryukyu trench. Due to the interaction of two forces, the stress regime rapidly changes from pure compression in the Taiwan collision belt to transtension near Ilan Plain and its offshore area. © 2007 Elsevier B.V. All rights reserved. Keywords: GPS; Okinawa Trough; Crustal deformation; Taiwan 1. Introduction was established since 1990 (Yu et al., 1997; Yu and Kuo, 2001). These GPS data provided the amplitude and orientation of The Global Positioning System (GPS) is a powerful tool to tectonic motion across the plate boundary of Taiwan. To better better understand plate kinematics and crustal deformation reconstruct the ongoing deformation in different tectonic (Dixon, 1991; Segall and Davis, 1997). In order to characterize domains, the dense network was established by Central the kinematics of deformation along the convergent plate Geological Survey since 1996 in the Taiwan area, it thus boundary of Taiwan, the island-wide and local GPS Network became possible to monitor the regional deformation along and around major active structures in different tectonic regimes. In addition, the crustal deformation in Ryukyu arc estimated from ⁎ Corresponding author. Fax: +886 2 23636095. GPS data provided the geodynamic constrain of tectonic E-mail address: [email protected] (J.-C. Hu). implication (Nakamura, 2004; Nishimura et al., 2004). 0040-1951/$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.tecto.2007.11.022 C.-S. Hou et al. / Tectonophysics 466 (2009) 344–355 345 The southeast-facing Ryukyu arc-and-trench system extends Taiwan region is intriguing due to the complex seismogenic from southern Kyushu to east of Taiwan. This subduction zone is structures in this transition zone. The relationship between associated with the back-arc spreading in the Okinawa Trough, seismogenic structures showing different patterns of crustal which ends in the Ilan Plain of northeastern Taiwan (Fig. 2), where strain provides fundamental constraints on the accommodation active transtension and transpression are occurring (Lu et al., of deformation along the transition of the subduction–collision 1995; Hu et al., 1996, 1997, 2002). In order to address the process. We thus use deformation data from GPS measure- consistency between stress pattern and active deformation, several ments from 2002 to 2006 to better quantify the rate, style and numerical experiments considering strain–stress relationships distribution deformation currently taking place along the were carried out (e.g., Hu et al., 1996, 2002). These experiments complex oblique subduction to collision boundary of northern aimed at evaluating the general compatibility between the Taiwan. kinematic boundary conditions, the geological structure, rheology and paleostress patterns. 2. Tectonic setting In this paper, we aim at characterizing the crustal deforma- tion in Ilan Plain of northern Taiwan located in a transition zone The island of Taiwan is located along a segment of the of collision and surrounding subduction. From the tectonic convergent boundary between the Philippine Sea plate and point of view, the rapid change of tectonic behavior from Eurasia, where collision and subduction processes occur (Fig. 1). oblique subduction to collision in the westernmost Ryukyu– The presence of a Wadati–Benioff zone is clearly indicated Fig. 1. Bathymetric and geodynamic map around Taiwan. Subduction along the Ryukyu and Manila trenches is represented with closed barbs on the overriding plate. The Longitudinal Valley Fault (LVF) strikes northward along the East Coast and shows both reverse (open barbs on hanging wall) and left-lateral strike–slip movement. Large open arrow and number indicate the relative plate motion vector between the Philippine Sea and Eurasian plates (Yu et al., 1999). GPS velocity vectors as thin arrows. 346 C.-S. Hou et al. / Tectonophysics 466 (2009) 344–355 by seismicity northeast of Taiwan, where the Philippine Sea plate whereas in northeastern Taiwan they trend ENE–WSW (Suppe, is being subducted northward along the Ryukyu trench (Tsai, 1984; Angelier et al., 1990). The existence of major change in 1986; Kao et al., 1998; Lallemand et al., 1999). In contrast, south structural trends of about 55 ° between 24The existence of of Taiwan, the Eurasian plate subducts southeastward beneath the major change in structural trenN and 25 °N (Fig. 2) has been Philippine Sea plate along the Manila trench (Kao and Jian, 2001; interpreted to the result of subduction flipping and opening of Malavieille et al., 2002). The Taiwan collision zone thus marks a the Okinawa Trough (Suppe, 1984). In addition, northeast segment of plate boundary where subduction undergoes a reversal Taiwan has undergone post-collisional processes and has been polarity. Taiwan is the place where the Luzon arc initially collided incorporated in the southern Ryukyu arc system. Evidence for with the Eurasian continent about 5 Ma ago (Ho, 1986; Angelier, this late evolution is provided by the presence of Quaternary 1990; Teng, 1990, 1996). The fold-and-thrust belt of Taiwan extensional structures (Lee and Wang, 1988; Lu et al., 1995) advanced northwestward, while the orogen growth was propagat- and extensional earthquake focal mechanisms (Tsai, 1986; Yeh ing southwestward along the passive continent margin of the et al., 1991; Kao et al., 1998). All of these features indicate that Eurasian plate (Suppe, 1984). the polarity of subduction has flipped in northern Taiwan; A characteristic feature of the Taiwan mountain belt is accordingly, the compressional tectonism that resulted in the the major change in the general structural trends between growth of the Taiwan orogen has been replaced by the ex- central Taiwan and northern Taiwan. On average, the mountain tensional tectonism of the Okinawa Trough (Suppe, 1984; Lee ranges in central Taiwan trend NNE–SSW south of 24.5°N, and Wang, 1988; Teng, 1996). Fig. 2. Tectonic framework and main structural units in Taiwan. Main tectonic units (Ho, 1986). Major thrust faults with triangles on the upthrust side. C.-S. Hou et al. / Tectonophysics 466 (2009) 344–355 347 Recent studies of fault slip data sets (Lu et al., 1995)and the background seismicity demonstrates two significant focal mechanisms of earthquakes (Yeh et al., 1991)have seismic zone trending NE–SW with a normal type earth- shown that N–SandE–W extensional trends are common quake (Fig. 3). In the northern tip of Central Range near the throughout northernmost Taiwan and the Ilan Plain area. southern flank of Ilan Plain, the strike–slip type earthquakes According to most analyses, N–S extension dominates near are dominant (Fig. 3). the western tip of the Okinawa Trough (Ilan Plain and Several numerical experiments carried out (Hu et al., 1996, adjacent offshore areas), whereas E–W extension prevails in 2002) successfully to characterize the regional transtensional northernmost Taiwan (Taipei basin and the Tatung volcano and transpressional deformation occurring in northern Taiwan field). To the east, the N–S extension is widespread in the (Fig. 4). The Okinawa Trough is the back-arc basin of the Ryukyu arc and corresponds to back-arc spreading activity Ryukyu subduction system (Fig. 1). The westward propagation of the Okinawa Trough. The Okinawa Trough shows various of the opening of the Okinawa Trough splits the mountainous extensional features including grabens and en-échelon backbone which resulted in triangular Ilan Plain (Fig.
Recommended publications
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • The Central Asia Collision Zone: Numerical Modelling of the Lithospheric Structure and the Present-Day Kinematics
    Th e Central Asia collision zone: numerical modelling of the lithospheric structure and the present - day kinematics Lavinia Tunini A questa tesi doctoral està subjecta a l a llicència Reconeixement - NoComercial – SenseObraDerivada 3.0. Espanya de Creative Commons . Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – SinObraDerivada 3.0. España de Creative Commons . Th is doctoral thesis is license d under the Creative Commons Attribution - NonCommercial - NoDerivs 3.0. Spain License . The Central Asia collision zone: numerical modelling of the lithospheric structure and the present-day kinematics Ph.D. thesis presented at the Faculty of Geology of the University of Barcelona to obtain the Degree of Doctor in Earth Sciences Ph.D. student: Lavinia Tunini 1 Supervisors: Tutor: Dra. Ivone Jiménez-Munt 1 Prof. Dr. Juan José Ledo Fernández 2 Prof. Dr. Manel Fernàndez Ortiga 1 1 Institute of Earth Sciences Jaume Almera 2 Department of Geodynamics and Geophysics of the University of Barcelona This thesis has been prepared at the Institute of Earth Sciences Jaume Almera Consejo Superior de Investigaciones Científicas (CSIC) March 2015 Alla mia famiglia La natura non ha fretta, eppure tutto si realizza. – Lao Tzu Agradecimientos En mano tenéis un trabajo de casi 4 años, 173 páginas que no hubieran podido salir a luz sin el apoyo de quienes me han ayudado durante este camino, permitiendo acabar la Tesis antes que la Tesis acabase conmigo. En primer lugar quiero agradecer mis directores de tesis, Ivone Jiménez-Munt y Manel Fernàndez. Gracias por haberme dado la oportunidad de entrar en el proyecto ATIZA, de aprender de la modelización numérica, de participar a múltiples congresos y presentaciones, y, mientras, compartir unas cervezas.
    [Show full text]
  • Originally Published As
    Originally published as: Akilan, A., Abdul Azeez, K. K., Schuh, H., Yuvraaj, N. (2015): Large-Scale Present-Day Plate Boundary Deformations in the Eastern Hemisphere Determined from VLBI Data: Implications for Plate Tectonics and Indian Ocean Growth. - Pure and Applied Geophysics, 172, 10, pp. 2643—2655. DOI: http://doi.org/10.1007/s00024-014-0952-2 Manuscript Text-Tables-fig captions Click here to download Manuscript: VLBI-manuscript-v8.docx Large-scale present-day plate boundary deformations in the Eastern hemisphere 1 2 determined from VLBI data: Implications for plate tectonics and Indian Ocean growth 3 4 5 6 7 8 9 A. Akilan1, K. K. Abdul Azeez1, H. Schuh2,3,4 and N. Yuvraaj5 10 11 12 1 13 CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad – 500007, India. 14 15 2 16 GFZ, German Research Centre for Geosciences, Potsdam, Germany. 17 18 19 3Vienna University of Technology, Vienna, Austria. 20 21 22 4TU Berlin, Dept. of Geodesy and Geoinformation Science, Berlin, Germany. 23 24 25 5 26 Prime Steels, Kolkata – 700001, India. 27 28 29 30 31 32 33 34 Abstract 35 36 37 38 39 40 Dynamics of the planet Earth is the manifestation of the diverse plate tectonic 41 42 processes, which have been operational since the Archean period of Earth evolution and 43 44 45 continue to deform the plate boundaries. Very Long Baseline Interferometry (VLBI) is an 46 47 efficient space geodetic method that allows the precise measurement of plate motions and 48 49 associated deformations. We analyze here the VLBI measurements made during a period of 50 51 52 about three decades at five locations on the Eastern hemisphere of the globe, which are 53 54 geographically distributed over five continents (plates) around the Indian Ocean.
    [Show full text]
  • How the Continents Deform: the Evidence from Tectonic Geodesy*
    ANRV374-EA37-11 ARI 23 March 2009 12:5 How the Continents Deform: The Evidence From Tectonic Geodesy∗ Wayne Thatcher U.S. Geological Survey, Menlo Park, California 94025; email: [email protected] Annu. Rev. Earth Planet. Sci. 2009. 37:237–62 Key Words First published online as a Review in Advance on GPS, tectonics, microplates, plate tectonics, continental dynamics January 20, 2009 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Space geodesy now provides quantitative maps of the surface velocity field This article’s doi: within tectonically active regions, supplying constraints on the spatial dis- 10.1146/annurev.earth.031208.100035 by University of California - San Diego on 01/13/14. For personal use only. tribution of deformation, the forces that drive it, and the brittle and ductile Copyright c 2009 by Annual Reviews. properties of continental lithosphere. Deformation is usefully described as All rights reserved Annu. Rev. Earth Planet. Sci. 2009.37:237-262. Downloaded from www.annualreviews.org relative motions among elastic blocks and is block-like because major faults 0084-6597/09/0530-0237$20.00 are weaker than adjacent intact crust. Despite similarities, continental block ∗The U.S. Government has the right to retain a kinematics differs from global plate tectonics: blocks are much smaller, typ- nonexclusive, royalty-free license in and to any ically ∼100–1000 km in size; departures from block rigidity are sometimes copyright covering this paper. measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating defor- mation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere.
    [Show full text]
  • The Earth's Lithosphere-Documentary
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310021377 The Earth's Lithosphere-Documentary Presentation · November 2011 CITATIONS READS 0 1,973 1 author: A. Balasubramanian University of Mysore 348 PUBLICATIONS 315 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Indian Social Sceince Congress-Trends in Earth Science Research View project Numerical Modelling for Prediction and Control of Saltwater Encroachment in the Coastal Aquifers of Tuticorin, Tamil Nadu View project All content following this page was uploaded by A. Balasubramanian on 13 November 2016. The user has requested enhancement of the downloaded file. THE EARTH’S LITHOSPHERE- Documentary By Prof. A. Balasubramanian University of Mysore 19-11-2011 Introduction Earth’s environmental segments include Atmosphere, Hydrosphere, lithosphere, and biosphere. Lithosphere is the basic solid sphere of the planet earth. It is the sphere of hard rock masses. The land we live in is on this lithosphere only. All other spheres are attached to this lithosphere due to earth’s gravity. Lithosphere is a massive and hard solid substratum holding the semisolid, liquid, biotic and gaseous molecules and masses surrounding it. All geomorphic processes happen on this sphere. It is the sphere where all natural resources are existing. It links the cyclic processes of atmosphere, hydrosphere, and biosphere. Lithosphere also acts as the basic route for all biogeochemical activities. For all geographic studies, a basic understanding of the lithosphere is needed. In this lesson, the following aspects are included: 1. The Earth’s Interior. 2.
    [Show full text]
  • Plate Motions, Slab Dynamics and Back-Arc Deformation Arnauld Heuret∗, Serge Lallemand
    Physics of the Earth and Planetary Interiors 149 (2005) 31–51 Plate motions, slab dynamics and back-arc deformation Arnauld Heuret∗, Serge Lallemand Laboratoire de Dynamique de la Lithosphere, Institut des Sciences de la Terre, de l’Environnement et de l’Espace de Montpellier (ISTEEM), CNRS—Universit´e Montpellier 2, CC. 60, place E. Bataillon, 34095 Montpellier cedex 5, France Received 12 September 2003; received in revised form 22 March 2004; accepted 26 August 2004 Abstract Back-arc extension or compression is often related to a particular behavior of the slab (dip change and/or forward/backward migration) with respect to the upper plate. Slabs act, either passively when anchored in the deep mantle whereas back-arc deformation accommodates the backward or forward motion of the upper plate with respect to the trench; or actively when slab pull – increasing with slab age – forces the trench to rollback. In addition to these two mechanisms, i.e., slab anchor and slab rollback, numerous observations support the existence of dynamic mantle flow that can exert an overpressure on one side of the slab, causing its forward or rearward migration with respect to the arc. Based on a compilation of upper plate absolute motion, trench absolute motion, back-arc deformation rate, upper plate strain regime and slab age for all oceanic subduction zones—excluding any kind of collision with continents, arcs or plateaus, we have examined how the combined effects of these parameters can account for the observed back-arc deformations. Our main results are:
    [Show full text]
  • Is the Ryukyu Subduction Zone in Japan Coupled Or Decoupled? —The Necessity of Seafloor Crustal Deformation Observation
    Earth Planets Space, 61, 1031–1039, 2009 Is the Ryukyu subduction zone in Japan coupled or decoupled? —The necessity of seafloor crustal deformation observation Masataka Ando1, Mamoru Nakamura2, Takeshi Matsumoto2, Masahide Furukawa2, Keiichi Tadokoro3, and Muneyoshi Furumoto3 1Institute of Earth Sciences, Academia Sinica, Taiwan 2Department of Earth and Material Sciences, University of Ryukyus, Japan 3Graduate School of Environmental Sciences, Nagoya University, Japan (Received July 19, 2008; Revised April 21, 2009; Accepted June 3, 2009; Online published November 10, 2009) The 2004 Sumatra-Andaman earthquake of Mw 9.3 occurred in a region where a giant earthquake seemed unlikely from the point of view of tectonics. This clearly implies that our current understanding of strain accumulation processes of large earthquakes at subduction zones needs to be reexamined. The Ryukyu subduction zone is one such zone since no large earthquake has been anticipated there for reasons similar those pertaining to the Sumatra-Andaman arc. Based on our analysis of historical earthquakes, plate motion, back-arc spreading, and GPS observation along the Ryukyu trench, we highly recommend monitoring seafloor crustal deformation along this trench to clarify whether a large earthquake (Mw >8) could potentially occur there in the future. Key words: Subduction zones, Ryukyu trench, decoupled/couple subduction, back-arc spreading, seafloor crustal deformation. 1. Introduction the possibility of such earthquakes along the Ryukyu sub- Japan is surrounded by the major subduction plate bound- duction. There are four main reasons why this giant earth- aries with the Pacific plate, Philippine Sea plate, and Amur quake was not expected for the Sumatra-Andaman arc.
    [Show full text]
  • A Decade of GPS in Southeast Asia: Resolving Sundaland Motion and Boundaries W
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, B06420, doi:10.1029/2005JB003868, 2007 Click Here for Full Article A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries W. J. F. Simons,1 A. Socquet,1,9 C. Vigny,2 B. A. C. Ambrosius,1 S. Haji Abu,3 Chaiwat Promthong,4 C. Subarya,5 D. A. Sarsito,6 S. Matheussen,1 P. Morgan,7 and W. Spakman8 Received 6 June 2005; revised 16 January 2007; accepted 2 March 2007; published 29 June 2007. [1] A unique GPS velocity field that spans the entire Southeast Asia region is presented. It is based on 10 years (1994–2004) of GPS data at more than 100 sites in Indonesia, Malaysia, Thailand, Myanmar, the Philippines, and Vietnam. The majority of the horizontal velocity vectors have a demonstrated global accuracy of 1 mm/yr (at 95% confidence level). The results have been used to (better) characterize the Sundaland block boundaries and to derive a new geokinematic model for the region. The rotation pole of the undeformed core of the Sundaland block is located at 49.0°N–94.2°E, with a clockwise rotation rate of 0.34°/Myr. With respect to both geodetically and geophysically defined Eurasia plate models, Sundaland moves eastward at a velocity of 6 ± 1 to 10 ± 1 mm/yr from south to north, respectively. Contrary to previous studies, Sundaland is shown to move independently with respect to South China, the eastern part of Java, the island of Sulawesi, and the northern tip of Borneo. The Red River fault in South China and Vietnam is still active and accommodates a strike-slip motion of 2 mm/yr.
    [Show full text]
  • Neotectonic Deformation in Central Eurasia: a Geodynamic 10.1002/2017JB014487 Model Approach
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Neotectonic Deformation in Central Eurasia: A Geodynamic 10.1002/2017JB014487 Model Approach Key Points: Lavinia Tunini1,2 , Ivone Jiménez-Munt1, Manel Fernandez1 , Jaume Vergés1, and Peter Bird3 • Modeled velocities reproduce lateral escape tectonics due to the 1Group of Dynamics of the Lithosphere, Institute of Earth Sciences Jaume Almera, CSIC, Barcelona, Spain, 2Now at Ecole continental collisions of Arabia and 3 India with Eurasia Normale Supérieure, Department of Geosciences, Paris, France, Department of Earth, Planetary, and Space Sciences, • SE Tibet velocities can be explained by University of California, Los Angeles, CA, USA the combination of Sumatra trench retreat, a lithospheric mantle thinning and strike-slip faulting Abstract Central Eurasia hosts wide orogenic belts of collision between India and Arabia with Eurasia, with • Arabia-India intercollision zone shows diffuse or localized deformation occurring up to hundreds of kilometers from the primary plate boundaries. no velocity deflections related to Arabia and India indentations Although numerous studies have investigated the neotectonic deformation in central Eurasia, most of them have focused on limited segments of the orogenic systems. Here we explore the neotectonic deformation of all of central Eurasia, including both collision zones and the links between them. We use a Correspondence to: thin-spherical sheet approach in which lithosphere strength is calculated from lithosphere structure and its L. Tunini, thermal regime. We investigate the contributions of variations in lithospheric structure, rheology, boundary [email protected] conditions, and fault friction coefficients on the predicted velocity and stress fields. Results (deformation pattern, surface velocities, tectonic stresses, and slip rates on faults) are constrained by independent Citation: observations of tectonic regime, GPS, and stress data.
    [Show full text]
  • New Constraints on the Intraplate Stress Field of the Amurian Plate
    New constraints on the intraplate stress field of the Amurian plate deduced from light earthquake focal mechanisms Andreas Barth a,b Friedemann Wenzel b aHeidelberg Academy of Sciences and Humanities, Karlstr. 4, 69117 Heidelberg, Germany bGeophysical Institute, University of Karlsruhe, Hertzstr. 16, 76187 Karlsruhe, Germany Abstract The Amurian plate plays an important role for the understanding of eastern Asian plate dynamics. Different models of rigid-rotation and relative velocities with respect to adjacent plates have been proposed. As few GPS data and sparse stress observa- tions have been available until today—particularly for the intraplate region—these models have proven hard to confirm or deny. To address this we determine new focal mechanisms for this region and perform a stress inversion for selected parts of the plate in order to provide better constraints on the plate dynamics. Most strong earthquakes occur on active plate margins and for these events focal mechanisms are routinely calculated by moment tensor inversion using teleseismic data on a global scale. Away from the plate margins, earthquake magnitudes are smaller and the efficiency of such automated procedures strongly depends on the number of seismic records available. Using the Frequency Sensitive Moment Tensor Inversion allows us to determine source mechanisms of light events with a smaller number of data. For the Amurian plate interior, we calculate 41 focal mechanisms for crustal earthquakes from 1993 to 2008 (3.9 ≤ MW ≤ 5.4). We combine these data with additional solutions from the literature to perform formal stress inversions for three separate regions. The reliability of the resulting stress orientations is evaluated by bootstrap analysis to show the variability of the principle stress axes.
    [Show full text]
  • Global Geodetic Strain Rate Model
    Global geodetic strain rate model GEM Technical Report 2014-07 V1.0.0 Kreemer, C., E. Klein, Z-K Shen, M. Wang, L. Estey, S. Wier, F. Boler Geological, earthquake and geophysical data GEM GLOBAL EARTHQUAKE MODEL Global geodetic strain rate model GEM Technical Report 2014-07 Version: 1.0.0 Date: March 2014 Author(s)*: Corné Kreemer, Elliot Klein, Zheng-Kang Shen, Min Wang, Lou Estey, Stuart Wier, Frances Boler (*) Authors’ affiliations: Corné Kreemer, Nevada Bureau of Mines and Geology, University of Nevada, Reno, USA Elliot Klein, Nevada Bureau of Mines and Geology, University of Nevada, Reno, USA Zheng-Kang Shen, Department of Earth and Space Sciences, UCLA, USA and China Earthquake Administration, Beijing, China Min Wang, China Earthquake Administration, Beijing, China Lou Estey, UNAVCO, Boulder, CO-USA Stuart Wier, UNAVCO, Boulder, CO-USA Frances Boler, UNAVCO, Boulder, CO-USA ii Rights and permissions Copyright © 2014 GEM Foundation, C. Kreemer, E. Klein, Z.-K. Shen, M. Wang, L. Estey, S. Wier, F. Boler Except where otherwise noted, this work is licensed under a Creative Commons Attribution 3.0 Unported License. The views and interpretations in this document are those of the individual author(s) and should not be attributed to the GEM Foundation. With them also lies the responsibility for the scientific and technical data presented. The authors have taken care to ensure the accuracy of the information in this report, but accept no responsibility for the material, nor liability for any loss including consequential loss incurred through the use of the material. Citation advice Kreemer, C., G. E.
    [Show full text]
  • Plate Boundaries in the Far East Region of Russia (From GPS Measurement, Seismic- Prospecting, and Seismological Data)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257480457 Plate boundaries in the Far East region of Russia (from GPS measurement, seismic- prospecting, and seismological data) Article in Russian Geology and Geophysics · April 2012 DOI: 10.1016/j.rgg.2012.03.002 CITATIONS READS 5 258 9 authors, including: D. G. Ardyukov Nikolay V. Shestakov A.A. Trofimuk Institute of Petroleum Geology … Far Eastern Federal University 23 PUBLICATIONS 87 CITATIONS 30 PUBLICATIONS 100 CITATIONS SEE PROFILE SEE PROFILE A.V. Timofeev A.A. Trofimuk Institute of Petroleum Geology … 9 PUBLICATIONS 28 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Ionospheric effects of meteorite falls View project All content following this page was uploaded by Nikolay V. Shestakov on 02 December 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Available online at www.sciencedirect.com Russian Geology and Geophysics 53 (2012) 376–391 www.elsevier.com/locate/rgg Plate boundaries in the Far East region of Russia (from GPS measurement, seismic-prospecting, and seismological data) V.Yu. Timofeev a,*, D.G. Ardyukov a, V.M. Solov’ev b, S.V. Shibaev c, A.F. Petrov c, P.Yu. Gornov d, N.V. Shestakov e,f, E.V. Boiko a, A.V. Timofeev a a A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, pr.
    [Show full text]