The Central Asia Collision Zone: Numerical Modelling of the Lithospheric Structure and the Present-Day Kinematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Africa-Arabia-Eurasia Plate Interactions and Implications for the Dynamics of Mediterranean Subduction and Red Sea Rifting
This page added by the GeoPRISMS office. Africa-Arabia-Eurasia plate interactions and implications for the dynamics of Mediterranean subduction and Red Sea rifting Authors: R. Reilinger, B. Hager, L. Royden, C. Burchfiel, R. Van der Hilst Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA, [email protected], Tel: (617)253 -7860 This page added by the GeoPRISMS office. Our proposed GeoPRISMS Initiative is based on the premise that understanding the mechanics of plate motions (i.e., the force balance on the plates) is necessary to develop realistic models for plate interactions, including processes at subduction and extensional (rifting) plate boundaries. Important advances are being made with new geologic and geophysical techniques and observations that are providing fundamental insights into the dynamics of these plate tectonic processes. Our proposed research addresses directly the following questions identified in the GeoPRISMS SCD Draft Science Plan: 4.2 (How does deformation across the subduction plate boundary evolve in space and time, through the seismic cycle and beyond?), 4.6 (What are the physical and chemical conditions that control subduction zone initiation and the development of mature arc systems?), and 4.7 (What are the critical feedbacks between surface processes and subduction zone mechanics and dynamics?). It has long been recognized that the Greater Mediterranean region provides a natural laboratory to study a wide range of geodynamic processes (Figure 1) including ocean subduction and continent- continent collision (Hellenic arc, Arabia-Eurasia collision), lithospheric delamination (E Turkey High Plateau, Alboran Sea/High Atlas), back-arc extension (Mediterranean basins, including Alboran, Central Mediterranean, Aegean), “escape” tectonics and associated continental transform faulting (Anatolia, North and East Anatolian faults), and active continental and ocean rifting (East African and northern Red Sea rifting, central Red Sea and Gulf of Aden young ocean rifting). -
Geological Evolution of the Red Sea: Historical Background, Review and Synthesis
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277310102 Geological Evolution of the Red Sea: Historical Background, Review and Synthesis Chapter · January 2015 DOI: 10.1007/978-3-662-45201-1_3 CITATIONS READS 6 911 1 author: William Bosworth Apache Egypt Companies 70 PUBLICATIONS 2,954 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Near and Middle East and Eastern Africa: Tectonics, geodynamics, satellite gravimetry, magnetic (airborne and satellite), paleomagnetic reconstructions, thermics, seismics, seismology, 3D gravity- magnetic field modeling, GPS, different transformations and filtering, advanced integrated examination. View project Neotectonics of the Red Sea rift system View project All content following this page was uploaded by William Bosworth on 28 May 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis William Bosworth Abstract The Red Sea is part of an extensive rift system that includes from south to north the oceanic Sheba Ridge, the Gulf of Aden, the Afar region, the Red Sea, the Gulf of Aqaba, the Gulf of Suez, and the Cairo basalt province. Historical interest in this area has stemmed from many causes with diverse objectives, but it is best known as a potential model for how continental lithosphere first ruptures and then evolves to oceanic spreading, a key segment of the Wilson cycle and plate tectonics. -
Arabian Peninsula from Wikipedia, the Free Encyclopedia Jump to Navigationjump to Search "Arabia" and "Arabian" Redirect Here
Arabian Peninsula From Wikipedia, the free encyclopedia Jump to navigationJump to search "Arabia" and "Arabian" redirect here. For other uses, see Arabia (disambiguation) and Arabian (disambiguation). Arabian Peninsula Area 3.2 million km2 (1.25 million mi²) Population 77,983,936 Demonym Arabian Countries Saudi Arabia Yemen Oman United Arab Emirates Kuwait Qatar Bahrain -shibhu l-jazīrati l ِش ْبهُ ا ْل َج ِزي َرةِ ا ْلعَ َربِيَّة :The Arabian Peninsula, or simply Arabia[1] (/əˈreɪbiə/; Arabic jazīratu l-ʿarab, 'Island of the Arabs'),[2] is َج ِزي َرةُ ا ْلعَ َرب ʿarabiyyah, 'Arabian peninsula' or a peninsula of Western Asia situated northeast of Africa on the Arabian plate. From a geographical perspective, it is considered a subcontinent of Asia.[3] It is the largest peninsula in the world, at 3,237,500 km2 (1,250,000 sq mi).[4][5][6][7][8] The peninsula consists of the countries Yemen, Oman, Qatar, Bahrain, Kuwait, Saudi Arabia and the United Arab Emirates.[9] The peninsula formed as a result of the rifting of the Red Sea between 56 and 23 million years ago, and is bordered by the Red Sea to the west and southwest, the Persian Gulf to the northeast, the Levant to the north and the Indian Ocean to the southeast. The peninsula plays a critical geopolitical role in the Arab world due to its vast reserves of oil and natural gas. The most populous cities on the Arabian Peninsula are Riyadh, Dubai, Jeddah, Abu Dhabi, Doha, Kuwait City, Sanaʽa, and Mecca. Before the modern era, it was divided into four distinct regions: Red Sea Coast (Tihamah), Central Plateau (Al-Yamama), Indian Ocean Coast (Hadhramaut) and Persian Gulf Coast (Al-Bahrain). -
Cathaysia, Gondwanaland, and the Paleotethys in the Evolution of Continental Southeast Asia
GEOSEA V Proceedings Vol. !!, Ceo!. Soc. Malaysia, Bullelin20, August 1986; pp. 179-199 Cathaysia, Gondwanaland, and the Paleotethys in the evolution of continental Southeast Asia YURI G. GATINSKY1 AND CHARLES S. HUTCHISO 2 1All-Union Institute of Geology of Foreign Countries, Dimitrova, 7 Moscow, 109180, U.S.S.R. 2Department of Geology, University of Malaya, 59100 Kuala Lumpur, Malaysia . Abstract: Continental Southeast A ia is dominated by Precambrian continenral blocks overlain by Late Proterozoic to Paleozoic platform successions, representing Atlantic-type rifted miogeocl inal margins. All the blocks appear to have rifted and drifted from the Australian part of Gondwanaland. The timing and extent of their eparati on is analysed by the distribution of Penni an Cathaysian Gigamop leris and Gondwana Glossop1eris floras, assisted by dated tectono-structural units, paleoclimate indicators, and good quality paleomagnetic data. Between the blocks lie narrow intensely folded Phanerozoic mobile belts, which developed on the oceanic crust of the Paleotethys ocean, characterized by pelagic-turbidite flysch equences which shallowed as the oceans narrowed. The narrowing was effected by subduction resulting in island arcs within the oceans, and cordilleran volcano-plutonic arcs along the block margin . Extinction of the bas ins resulted in collision zones containing S-type granites and utu re zones containing dismembered ophi olites. Post-consolidation pl ate readju tments resulted in wrench and rift fa ulting in several places while convergence conti nued elsewhere. The tectonic analysis has been carried out by recognizing tectonic elements (structural-formati onal unit ~) for selected Phanerozoic time frame . We also pre ent a Phanerozoic sequence of palinspatic reconstructiors for the ri fti ng and drifting of the blocks from northern Australia. -
Originally Published As
Originally published as: Akilan, A., Abdul Azeez, K. K., Schuh, H., Yuvraaj, N. (2015): Large-Scale Present-Day Plate Boundary Deformations in the Eastern Hemisphere Determined from VLBI Data: Implications for Plate Tectonics and Indian Ocean Growth. - Pure and Applied Geophysics, 172, 10, pp. 2643—2655. DOI: http://doi.org/10.1007/s00024-014-0952-2 Manuscript Text-Tables-fig captions Click here to download Manuscript: VLBI-manuscript-v8.docx Large-scale present-day plate boundary deformations in the Eastern hemisphere 1 2 determined from VLBI data: Implications for plate tectonics and Indian Ocean growth 3 4 5 6 7 8 9 A. Akilan1, K. K. Abdul Azeez1, H. Schuh2,3,4 and N. Yuvraaj5 10 11 12 1 13 CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad – 500007, India. 14 15 2 16 GFZ, German Research Centre for Geosciences, Potsdam, Germany. 17 18 19 3Vienna University of Technology, Vienna, Austria. 20 21 22 4TU Berlin, Dept. of Geodesy and Geoinformation Science, Berlin, Germany. 23 24 25 5 26 Prime Steels, Kolkata – 700001, India. 27 28 29 30 31 32 33 34 Abstract 35 36 37 38 39 40 Dynamics of the planet Earth is the manifestation of the diverse plate tectonic 41 42 processes, which have been operational since the Archean period of Earth evolution and 43 44 45 continue to deform the plate boundaries. Very Long Baseline Interferometry (VLBI) is an 46 47 efficient space geodetic method that allows the precise measurement of plate motions and 48 49 associated deformations. We analyze here the VLBI measurements made during a period of 50 51 52 about three decades at five locations on the Eastern hemisphere of the globe, which are 53 54 geographically distributed over five continents (plates) around the Indian Ocean. -
Seismic Anisotropy and the Mantle Dynamics Beneath the Arabian Plate
Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Fall 2018 Seismic anisotropy and the mantle dynamics beneath the Arabian plate Saleh Ismail Hassan Qaysi Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Geophysics and Seismology Commons Department: Geosciences and Geological and Petroleum Engineering Recommended Citation Qaysi, Saleh Ismail Hassan, "Seismic anisotropy and the mantle dynamics beneath the Arabian plate" (2018). Doctoral Dissertations. 2727. https://scholarsmine.mst.edu/doctoral_dissertations/2727 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SEISMIC ANISOTROPY AND THE MANTLE DYNAMICS BENEATH THE ARABIAN PLATE by SALEH ISMAIL HASSAN QAYSI A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in GEOLOGY AND GEOPHYSICS 2018 Approved by: Kelly Liu, Advisor Stephen Gao Neil L. Anderson Ralph Flori Jr Saad Mogren 2018 Saleh Ismail Hassan Qaysi All Rights Reserve iii PUBLICATION DISSERTATION OPTION This dissertation consists of two articles formatted using the publication option. Paper I, the pages from 3 – 19 were accepted for publication in the Seismological Research Letter on December 19, 2018 under number (SRL-D-18-00144_R1). Paper II, the pages from 20 – 56 are in a preparation to be submitted to a scientific journal. iv ABSTRACT We investigate mantle seismic azimuthal anisotropy and deformation beneath the Arabian Plate and adjacent areas using data from 182 broadband seismic stations which include 157 stations managed by the Saudi Geological Survey. -
Paleozoic Stratigraphy and Petroleum Systems of the Western and Southwestern Deserts of Iraq
GeoArabia, Vol. 3, No. 2, 1998 Paleozoic Stratigraphy and Petroleum Systems, Iraq Gulf PetroLink, Bahrain Paleozoic Stratigraphy and Petroleum Systems of the Western and Southwestern Deserts of Iraq Adnan A.M. Aqrawi Smedvig Technologies ABSTRACT A stratigraphic scheme for the Paleozoic of the Southwestern Desert of Iraq is proposed based upon the review of recently published data from several deep wells in the western part of the country and from outcrops in other regions in Iraq. The main formations are described in terms of facies distribution, probable age, regional thickness, and correlations with the well-reported Paleozoic successions of the adjacent countries (e.g. Jordan and Saudi Arabia), as well as with the Thrust Zone of North Iraq. The Paleozoic depositional and tectonic evolution of the Western and Southwestern Deserts of Iraq, particularly during Cambrian, Ordovician and Silurian, shows marked similarity to those of eastern Jordan and northern Saudi Arabia. However, local lithological variations, which are due to Late Paleozoic Hercynian tectonics, characterize the Upper Paleozoic sequences. The Lower Silurian marine “hot” shale, 65 meters thick in the Akkas-1 well in the Western Desert, is believed to be the main Paleozoic source rock in the Western and Southwestern Deserts. Additional potential source rocks in this region could be the black shales of the Ordovician Khabour Formation, the Upper Devonian to Lower Carboniferous Ora Shale Formation, and the lower shaly beds of the Upper Permian Chia Zairi Formation. The main target reservoirs are of Ordovician, Silurian, Carboniferous and Permian ages. Similar reservoirs have recently been reported for the Western Desert of Iraq, eastern Jordan and northern Saudi Arabia. -
Rift-Valley-1.Pdf
R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Rift Valley A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. G R A D E S 6 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 9 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/rift-valley/ A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. Rift valleys are found both on land and at the bottom of the ocean, where they are created by the process of seafloor spreading. Rift valleys differ from river valleys and glacial valleys in that they are created by tectonic activity and not the process of erosion. Tectonic plates are huge, rocky slabs of Earth's lithosphere—its crust and upper mantle. Tectonic plates are constantly in motion—shifting against each other in fault zones, falling beneath one another in a process called subduction, crashing against one another at convergent plate boundaries, and tearing apart from each other at divergent plate boundaries. Many rift valleys are part of “triple junctions,” a type of divergent boundary where three tectonic plates meet at about 120° angles. Two arms of the triple junction can split to form an entire ocean. The third, “failed rift” or aulacogen, may become a rift valley. -
How the Continents Deform: the Evidence from Tectonic Geodesy*
ANRV374-EA37-11 ARI 23 March 2009 12:5 How the Continents Deform: The Evidence From Tectonic Geodesy∗ Wayne Thatcher U.S. Geological Survey, Menlo Park, California 94025; email: [email protected] Annu. Rev. Earth Planet. Sci. 2009. 37:237–62 Key Words First published online as a Review in Advance on GPS, tectonics, microplates, plate tectonics, continental dynamics January 20, 2009 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Space geodesy now provides quantitative maps of the surface velocity field This article’s doi: within tectonically active regions, supplying constraints on the spatial dis- 10.1146/annurev.earth.031208.100035 by University of California - San Diego on 01/13/14. For personal use only. tribution of deformation, the forces that drive it, and the brittle and ductile Copyright c 2009 by Annual Reviews. properties of continental lithosphere. Deformation is usefully described as All rights reserved Annu. Rev. Earth Planet. Sci. 2009.37:237-262. Downloaded from www.annualreviews.org relative motions among elastic blocks and is block-like because major faults 0084-6597/09/0530-0237$20.00 are weaker than adjacent intact crust. Despite similarities, continental block ∗The U.S. Government has the right to retain a kinematics differs from global plate tectonics: blocks are much smaller, typ- nonexclusive, royalty-free license in and to any ically ∼100–1000 km in size; departures from block rigidity are sometimes copyright covering this paper. measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating defor- mation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. -
The Geomorphology of the Makran Trench in the Context of the Geological and Geophysical Settings of the Arabian Sea Polina Lemenkova
The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea Polina Lemenkova To cite this version: Polina Lemenkova. The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geology, Geophysics & Environment, 2020, 46 (3), pp.205- 222. 10.7494/geol.2020.46.3.205. hal-02999997 HAL Id: hal-02999997 https://hal.archives-ouvertes.fr/hal-02999997 Submitted on 11 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License 2020, vol. 46 (3): 205–222 The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea Polina Lemenkova Analytical Center; Moscow, 115035, Russian Federation; e-mail: [email protected]; ORCID ID: 0000-0002-5759-1089 © 2020 Author. This is an open access publication, which can be used, distributed and reproduced in any medium according to the Creative Commons CC-BY 4.0 License requiring that the original work has been properly cited. Received: 10 June 2020; accepted: 1 October 2020; first published online: 27 October 2020 Abstract: The study focuses on the Makran Trench in the Arabian Sea basin, in the north Indian Ocean. -
July 31, 1977. SIO Reference 77-31
University of California, San Diego Marine Physical Laboratory of The Scripps Institution Of Oceanography La Jolla, California 92093 Cruise Report, INDOPAC Expedition, Legs 9 through 16 January 12–July 31, 1977 SIO REFERENCE 77-31 Edited by Delpha D. McGowan, George G. Shor, Jr. and Stuart M. Smith Reproduction in whole or in part is permitted for any purpose of the U.S. Government F. N. Spiess, Director Marine Physical Laboratory 23 November 1977 ― 1 ― ABSTRACT In the first half of 1977, the R/V Thomas Washington of the Scripps Institution of Oceanography continued work on INDOPAC Expedition, starting from Guam, Marianas, and ending in San Diego. Geophysical and geological programs were carried out in the marginal seas of southeast Asia; biological and physical oceanographic programs were carried out near Guam, and in the central and eastern Pacific. This report includes a brief summary of the work on each cruise leg, a chronology, cruise tracks, and lists of stations, samples, and observations. Work on leg 13 was in cooperation with the K/M Samudera of the Indonesian Institute of Sciences. INTRODUCTION INDOPAC Expedition started in March, 1976, when the R/V Thomas Washington left San Diego and headed across the Pacific carrying out programs in physical oceanography that terminated at Guam in June, 1976. Programs in marine geology and geophysics, mostly part of the SEATAR cooperative program of study of the tectonics and resources of southeast Asia offshore areas, were carried out from June to September, 1976 concluding at Guam. The ship went into lay-up status in Guam, in October, pending resumption of the work.