Aquifex Aquifex Pyrophilus

Total Page:16

File Type:pdf, Size:1020Kb

Aquifex Aquifex Pyrophilus HelferInnen gesucht für die Master-Feier Termin: 16. Dezember 2009 Glaskasten, Campus Essen Ab 13.00 Uhr Bitte bei Prof. Schmidt melden Biofilm Centre 1 Bacterial diversity 2 Biofilm Centre 2 Aquifex Prescott et al., 2000 Biofilm Centre 3 Aquifex (Hyper)thermophilic, autotrophic, aerobic From the Lunar and Planetary Institute. Approximately 2 meters downstream of the spring pictured to the right. Pink microbial filaments containing Aquifex and Thermotoga were found in this channel. The tempurature was measured to be 83 degrees Celsius and the pH was found to be 8. 4 Aquifex Aquifex pyrophilus novel group of marine hyperthermophilic H2 -oxidizing bacteria ¾ As a hyperthermophilic bacterium, Aquifex aeolicus grows in extremely hot tempuratures such as near volcanoes or hot springs. ¾ They grow optimally at temperatures around 85 degrees but can grow at temperatures up to 95 degrees. ¾ It needs oxygen to carry on its metabolic machinery, but it can function in relatively low levels of oxygen (A. pyrophilus can grow in levels of oxygen as low as 7.5 ppm). ¾ Aquifex species generally form large cell aggregates, which can be comprised of up to 100 individual cells. Copyright for all images: K.O.Stetter & R.Rachel, Univ.Regensburg Biofilm Centre 5 Thermotoga Prescott et al., 2000 Biofilm Centre 6 7 Thermotoga maritima Originally isolated from geothermally heated sediment in Vulcano, Italy. Growth optimum 80°C. This bacterium breaks down many simple and complex carbohydrates, including cellulose and xylan. If converted to fuels such as ethanol, cellulose and xylan are potential sources of renewable energy. Candidate for biofuel production Biofilm Centre 8 Dr. H. Steele 2006 Deinococci Biofilm Centre 9 Prescott et al., 2000 Deinococci Deinococcus radiodurans: ¾ An extremophilic bacterium, and is the „strange berry which withstands radiation“ mostradioresistant organism known. While a dose of 10 Gy is sufficient to kill a human, and a dose of 60 Gy is sufficient to kill all cells in a culture of E. coli, D. radiodurans is capable of withstanding an instantaneous dose of up to 5,000 Gy with no loss of viability, and an instantaneous dose of up to 15,000 Gy with 37% viability. ¾ It can survive heat, cold, dehydration, vacuum, and acid, and because of its resistance to more than one extreme condition, D. radiodurans is known as a polyextremophile. It has also been listed as the world's toughest bacterium in "The Guinness Book Of World Records" because of its extraordinary resistance to several extreme conditions. It has been classified as a Gram-positive bacterium. Scientific classification 1 gray (Gy) is the Kingdom:Bacteria absorption of one joule Phylum:Deinococcus-Thermus of energy, in the form Order:Deinococcales of ionizing radiation, Genus:Deinococcus by 1 kg of matter. Species:D. radiodurans Binomial name: Deinococcus radiodurans Brooks & Murray, 1981 Biofilm Centre 10 Deinococci Prescott11 et al., 2000 Photosynthetic bacteria 12 Cyanobacteria: oxygenic photosynthesis 6 CO2 + 6 H2O → C6H12O6 + 6 O2Ü ¾ Primary producers (organisms that fix CO2 for cellular carbon) play key roles in both oceanic food chain dynamics and in marine biogeochemistry. ¾ The factors that control their growth directly impact global processes. ¾ Cyanobacteria, including species of Synechococcus, Trichodesmium, and Crocosphaera, are prominent constituents of the marine biosphere that account for a significant percentage of global primary productivity. ¾ Additionally, in warm waters diazotrophic cyanobacteria (i.e., Trichodesmium and Crocosphaera) are vital components of the global nitrogen cycle through the production of “new” nitrogen. Biofilm Centre 13 Fossil cyanobacteria a) thin sections of Archean Apex (ca. 3,5 billion years old), Western Australia b) Gloediniopsis, about 1,5 billion years old from Ural mountains c) Palaeolyngbia, about 950 million years old, from Eastern Sibiria 14 Cyanobacteria (Greek: κυανός (kyanós) = blue + bacterium) also known as Cyanophyta is a phylum (or "division") of Bacteria that obtain their energy through photosynthesis. ¾They are often referred to as blue-green algae, although they are in fact prokaryotes, not algae. The description is primarily used to reflect their appearance and ecological role rather than their evolutionary lineage. The name "cyanobacteria" comes from the color of the bacteria, cyan; the bacteria do not use or produce cyanide whose chemical prefix is „cyano-“ ¾ Putative fossil traces of cyanobacteria have been found from around 3.8 billion years ¾They are a significant component of the marine nitrogen cycle and an important primary producer in many areas of the ocean. ¾Their ability to perform oxygenic (plant-like) photosynthesis is thought to have converted the early reducing atmosphere into an oxidizing one, which dramatically changed the life forms on Earth and provoked an explosion of biodiversity. ¾ See: Oxygen Catastrophe. Biofilm Centre 15 The oxygen catastrophe ¾ A massive environmental change believed to have happened during the Siderian period at the beginning of the Paleoproterozoic era, about 2.4 billion years ago. It is also called the Oxygen Crisis, Oxygen Revolution or The Great Oxidation. ¾ When evolving life forms developed oxyphotosynthesis about 2.7 billion years ago, molecular oxygen was produced in large quantities. This eventually caused an ecological crisis, as oxygen was toxic to the anaerobic organisms living at the time. ¾ However, it also provided a new opportunity. Despite recycling, life had remained energetically limited until the widespread availability of oxygen. ¾ This breakthrough in metabolic evolution greatly increased the free energy supply to living organisms, having a truly global environmental impact: the „rusting of the earth“ http://www.answers.com/topic/oxygen-atmosphere-png 16 Cyanobacterium: Anabaena ¾ Anabaena is a cyanobacterium, growing in bead-like cells and living in shallow water and damp soil everywhere ¾ Cyanobacteria increase the nitrogen content of soil, and some species of Anabaena have been used as natural fertilizers in the cultivation of rice ¾ Anabaena circinalis can produce paralytic shellfish poisoning (PSP) toxin Biofilm Centre 17 Cyanobacteria: Synechococcus Among the most abundant organisms on the planet, these photosynthetic bacteria live in the open ocean. Some forms can swim through the water at speeds up to 25mm per second, despite their lack of external propelling devices. Synechococcus and Prochlorococcus bacteria account for two-thirds of the carbon fixation that occurs in the oceans. Cyanobacterial stromatolites Dr. H. Steele 2006 Biofilm Centre 18 Oxygenic photosynthetic bacteria Prescott et al., 2000 19 Cyanobacterial bloom http://www.fultonlewis.com/images/GulfGreeningPhoto.jpg 20 Toxic cyanobacterial blooms Microcystis aeruginosa (formerly known as blue-green algae) grow in Hartebeesport dam (drinking water reservoir of Pretoria, South Africa) producing toxins Other toxin producing species: Anabaena spp. Microcystis aeruginosa Nodularia spp Biofilm Centre 21 Actinobacteria ¾ The Actinobacteria or Actinomycetes are a group of Gram-positive bacteria with high G+C ratio. ¾ They include some of the most common soil life, playing an important role in decomposition of organic materials, such as cellulose and chitin and thereby play a vital part in organic matter turnover and carbon cycle. ¾ Thus replenishing the supply of nutrients in the soil and is an important part of humus formation. ¾ Actinoabaceria are complex with a large genome 22 Actinomycetes ¾ Actinomycetes are aerobic, Gram-positive bacteria that form branching, usually non-fragmenting hyphae and asexual spores ¾ The asexual spores borne on aerial mycelia are called conidiospores or conidia if they are at the tip of hyphae and sporangiospores when they are within the sporangia ¾ Actinomycetes have several distincitvely different types of cell walls and often also vary in terms of the sugars present in cell extracts. Properties such as color and morphology are also taxonomically useful ¾ Actinobacteria are well known as secondary metabolite producers and hence of high pharmacological and commercial interest. In 1940 Selman Waksman discovered that the soil bacteria he was studying made actinomycin, a discovery which granted him a Nobel Prize. Since then hundreds of naturally occurring antibiotics have been discovered in these terrestrial microorganisms, especially from the genus Streptomyces. ¾ Other Actinobacteria inhabit plants and animals, including a few pathogens, such as Mycobacterium, Corynebacterium, Nocardia, Rhodococcus and a few species of Streptomyces Biofilm Centre 23 Actinomyces ¾ A genus of Gram-positive bacteria Some species are anaerobic, while others are facultatively anaerobic ¾ Actinomyces species do not form spores, and, while individual bacteria are rod-shaped, morphologically Actinomyces colonies form fungus- like branched networks of hyphae ¾ Some actinomycetes are responsible for the smell of soil after fresh rain ¾ Actinomyces naeslundii are Gram positive rod shaped bacteria that occupy the oral cavity. ¾ They have been implicated in periodontal disease and root caries. These bacteria are also associated with good oral health. ¾ These bacteria are some of the first to occupy the oral cavity and colonize the tooth's surface. Biofilm Centre 24 Prescott et al., 2000 Actinomycetes spores Prescott et al., 2000 25 Colonial growth of actinomycetes Biofilm Centre 26 Prescott et al., 2000 Streptomycin Streptomycin intereferes with bacterial
Recommended publications
  • Diversity of Understudied Archaeal and Bacterial Populations of Yellowstone National Park: from Genes to Genomes Daniel Colman
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 7-1-2015 Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes Daniel Colman Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Colman, Daniel. "Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes." (2015). https://digitalrepository.unm.edu/biol_etds/18 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Daniel Robert Colman Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Cristina Takacs-Vesbach , Chairperson Robert Sinsabaugh Laura Crossey Diana Northup i Diversity of understudied archaeal and bacterial populations from Yellowstone National Park: from genes to genomes by Daniel Robert Colman B.S. Biology, University of New Mexico, 2009 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2015 ii DEDICATION I would like to dedicate this dissertation to my late grandfather, Kenneth Leo Colman, associate professor of Animal Science in the Wool laboratory at Montana State University, who even very near the end of his earthly tenure, thought it pertinent to quiz my knowledge of oxidized nitrogen compounds. He was a man of great curiosity about the natural world, and to whom I owe an acknowledgement for his legacy of intellectual (and actual) wanderlust.
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41559-020-1221-7 In the format provided by the authors and unedited. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Linzhou Li1,2,13, Sibo Wang1,3,13, Hongli Wang1,4, Sunil Kumar Sahu 1, Birger Marin 5, Haoyuan Li1, Yan Xu1,4, Hongping Liang1,4, Zhen Li 6, Shifeng Cheng1, Tanja Reder5, Zehra Çebi5, Sebastian Wittek5, Morten Petersen3, Barbara Melkonian5,7, Hongli Du8, Huanming Yang1, Jian Wang1, Gane Ka-Shu Wong 1,9, Xun Xu 1,10, Xin Liu 1, Yves Van de Peer 6,11,12 ✉ , Michael Melkonian5,7 ✉ and Huan Liu 1,3 ✉ 1State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China. 2Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark. 3Department of Biology, University of Copenhagen, Copenhagen, Denmark. 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China. 5Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany. 6Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium. 7Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany. 8School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China. 9Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. 10Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China. 11College of Horticulture, Nanjing Agricultural University, Nanjing, China. 12Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
    [Show full text]
  • And Thermo-Adaptation in Hyperthermophilic Archaea: Identification of Compatible Solutes, Accumulation Profiles, and Biosynthetic Routes in Archaeoglobus Spp
    Universidade Nova de Lisboa Osmo- andInstituto thermo de Tecnologia-adaptation Química e Biológica in hyperthermophilic Archaea: Subtitle Subtitle Luís Pedro Gafeira Gonçalves Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. OH OH OH CDP c c c - CMP O O - PPi O3P P CTP O O O OH OH OH OH OH OH O- C C C O P O O P i Dissertation presented to obtain the Ph.D degree in BiochemistryO O- Instituto de Tecnologia Química e Biológica | Universidade Nova de LisboaP OH O O OH OH OH Oeiras, Luís Pedro Gafeira Gonçalves January, 2008 2008 Universidade Nova de Lisboa Instituto de Tecnologia Química e Biológica Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. This dissertation was presented to obtain a Ph. D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. By Luís Pedro Gafeira Gonçalves Supervised by Prof. Dr. Helena Santos Oeiras, January, 2008 Apoio financeiro da Fundação para a Ciência e Tecnologia (POCI 2010 – Formação Avançada para a Ciência – Medida IV.3) e FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH / BD / 5076 / 2001. ii ACKNOWNLEDGMENTS The work presented in this thesis, would not have been possible without the help, in terms of time and knowledge, of many people, to whom I am extremely grateful. Firstly and mostly, I need to thank my supervisor, Prof. Helena Santos, for her way of thinking science, her knowledge, her rigorous criticism, and her commitment to science.
    [Show full text]
  • Being Aquifex Aeolicus: Untangling a Hyperthermophile's Checkered Past
    GBE Being Aquifex aeolicus: Untangling a Hyperthermophile’s Checkered Past Robert J.M. Eveleigh1,2, Conor J. Meehan1,2,JohnM.Archibald1, and Robert G. Beiko2,* 1Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada 2Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada *Corresponding author: E-mail: [email protected]. Accepted: November 22, 2013 Abstract Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyper- thermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Downloaded from Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a http://gbe.oxfordjournals.org/ minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria.
    [Show full text]
  • The Thermal Limits to Life on Earth
    International Journal of Astrobiology 13 (2): 141–154 (2014) doi:10.1017/S1473550413000438 © Cambridge University Press 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/. The thermal limits to life on Earth Andrew Clarke1,2 1British Antarctic Survey, Cambridge, UK 2School of Environmental Sciences, University of East Anglia, Norwich, UK e-mail: [email protected] Abstract: Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above *60 °C and most not above 40 °C.
    [Show full text]
  • On the Chimeric Nature, Thermophilic Origin, and Phylogenetic Placement of the Thermotogales
    On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales Olga Zhaxybayevaa, Kristen S. Swithersb, Pascal Lapierrec, Gregory P. Fournierb, Derek M. Bickhartb, Robert T. DeBoyd, Karen E. Nelsond, Camilla L. Nesbøe,f, W. Ford Doolittlea,1, J. Peter Gogartenb, and Kenneth M. Nollb aDepartment of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5; bDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125; cBiotechnology-Bioservices Center, University of Connecticut, Storrs, CT 06269-3149; dThe J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850; eCentre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway; and fDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Contributed by W. Ford Doolittle, February 11, 2009 (sent for review January 6, 2009) Since publication of the first Thermotogales genome, Thermotoga developments are relevant here: first that mesophilic Thermo- maritima strain MSB8, single- and multi-gene analyses have dis- togales have been discovered (2), raising the possibility that agreed on the phylogenetic position of this order of Bacteria. Here hyperthermophily is not ancestral to the group, and second that we present the genome sequences of 4 additional members of the a thorough analysis of A. aeolicus shows that, although many of Thermotogales (Tt. petrophila, Tt. lettingae, Thermosipho melane- its informational genes support sisterhood with Tt. maritima, siensis, and Fervidobacterium nodosum) and a comprehensive substantial exchange of some of these genes has occurred with comparative analysis including the original T.
    [Show full text]
  • BEING Aquifex Aeolicus: UNTANGLING a HYPERTHERMOPHILE‘S CHECKERED PAST
    BEING Aquifex aeolicus: UNTANGLING A HYPERTHERMOPHILE‘S CHECKERED PAST by Robert J.M. Eveleigh Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia December 2011 © Copyright by Robert J.M. Eveleigh, 2011 DALHOUSIE UNIVERSITY DEPARTMENT OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled ―BEING Aquifex aeolicus: UNTANGLING A HYPERTHERMOPHILE‘S CHECKERED PAST‖ by Robert J.M. Eveleigh in partial fulfillment of the requirements for the degree of Master of Science. Dated: December 13, 2011 Co-Supervisors: _________________________________ _________________________________ Readers: _________________________________ ii DALHOUSIE UNIVERSITY DATE: December 13, 2011 AUTHOR: Robert J.M. Eveleigh TITLE: BEING Aquifex aeolicus: UNTANGLING A HYPERTHERMOPHILE‘S CHECKERED PAST DEPARTMENT OR SCHOOL: Department of Computational Biology and Bioinformatics DEGREE: MSc CONVOCATION: May YEAR: 2012 Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. I understand that my thesis will be electronically available to the public. The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author‘s written permission. The author attests that permission has been obtained for the use of any copyrighted material appearing in the thesis (other than the brief excerpts requiring only proper acknowledgement in scholarly writing), and that all such use is clearly acknowledged. _______________________________ Signature of Author iii TABLE OF CONTENTS List of Tables ....................................................................................................................
    [Show full text]
  • Physical Biology of the Cell
    Physical Biology of the Cell Rob Phillips Jané Kondev Julie Theriot illustrated by Nigel Orme Garland Science Chapter 2 What and Where: Construction Plans for Cells and Organisms “Although not everyone is mindful of it all cell biologists have two cells of in- terest: the one they are studying and Escherichia coli.” - F. Neidhardt Chapter Overview: In Which We Consider the Size of Cells and the Nature of Their Contents Cells come in a dazzling variety of shapes and sizes. Even so, their molecular inventories share many common features, reflecting the underlying biochemical unity of life. In this chapter, we introduce the bacterium Escherichia coli (we will abbreviate this cell type as E. coli throughout the book) as our biological standard ruler. This cell serves as the basis for a first examination of the in- ventory of cells and will permit us to get a sense of the size of cells and the nature of their contents. Indeed, using simple estimates, we will take stock of the genome size, numbers of lipids and proteins and the ribosome content of bacteria. With the understanding revealed by E. coli in hand, we then take a powers-of-ten journey down and up from the scale of individual cells. Our downward journey will examine organelles within cells, macromolecular assem- blies ranging from ribosomes to viruses and then the macromolecules that are the engines of cellular life. Our upward journey from the scale of individual cells will examine a second class of biological structures, namely those resulting from different forms of multicellularity, this time with an emphasis on how cells act together in contexts ranging from bacterial biofilms to the networks of neurons in the brain.
    [Show full text]
  • Evidence for Massive Gene Exchange Between Archaeal and Bacterial
    MEETING REPORT releasing Sir proteins from the be silenced by the Sir protein com- 3 Loo, S. and Rine, J. (1995) Annu. Ku70p–Ku80p telomerase complex plex. In summary, the importance of Rev. Cell Dev. Biol. 11, (David Shore, Univ. of Geneva, chromatin structure was evident in 519–548 Switzerland). Cdc13p protein binds all sessions. Yeast origins, cen- 4 Smith, J.S. and Boeke, J.D. (1997) single-stranded DNA at the tromeres and telomeres bind elegant Genes Dev. 11, 241–254 Ku70p–Ku80p telomerase complex multiprotein complexes that act as 5 Weaver, D.T. (1995) Trends Genet. (Vicki Lundblad, Baylor, USA). regulatory machines to change 11, 388–392 Nuclear organization of telomeres is chromatin structure and to allow important with telomeres located at important cellular processes to occur. the nuclear periphery (Sussan Robert A. Sclafani [email protected] Gasser, ISREC, Switzerland). Target- Further reading ting DNA to the periphery using a 1 Dutta, A. and Bell, S.P. (1997) ER–Golgi anchoring signal can pro- Annu. Rev. Cell Dev. Biol. 13, Department of Biochemistry and Molecular duce silencing (Rolf Sternglanz, 293–332 Genetics, University of Colorado Health SUNY, USA). Hence, any gene 2 Pluta, A.F. et al. (1995) Science 270, Sciences Center, 4200 E. Ninth Avenue, brought to the nuclear periphery will 1591–1594 Denver, CO 80262, USA. LETTER reasoned that a detailed comparison Evidence for massive gene exchange of the Aquifex and archaeal between archaeal and bacterial genomes could reveal genome-scale adaptations for thermophily. hyperthermophiles The protein sequences encoded in all complete bacterial genomes were compared with the non- redundant protein sequence Sequencing of multiple complete exceptional among bacteria in that it database using the gapped BLAST genomes of bacteria and archaea occupies the hyperthermophilic program7, and a phylogenetic makes it possible to perform niche otherwise dominated by breakdown was automatically systematic, genome-scale archaea2.
    [Show full text]
  • Distribution of Aerobic Arsenite Oxidase Genes Within the Aquificales
    Interdisciplinary Studies on Environmental Chemistry — Biological Responses to Contaminants, Eds., N. Hamamura, S. Suzuki, S. Mendo, C. M. Barroso, H. Iwata and S. Tanabe, pp. 47–55. © by TERRAPUB, 2010. Distribution of Aerobic Arsenite Oxidase Genes within the Aquificales Natsuko HAMAMURA1,2, Rich E. MACUR3, Yitai LIU2, William P. INSKEEP3 and Anna-Louise REYSENBACH2 1Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577 Japan 2Department of Biology, Portland State University, Portland, OR 97201 U.S.A. 3Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717 U.S.A. (Received 4 January 2010; accepted 25 January 2010) Abstract—The Aquificales are one of the dominant bacterial orders associated with arsenic-rich geothermal environments, however, their role in arsenic transformations has not been fully characterized. In this report, we examined the distribution of aerobic arsenite oxidase genes (aroA-like) among 26 Aquificales isolates from geographically distinct marine and terrestrial hydrothermal systems. Arsenite-oxidase genes were detected in two Hydrogenobacter strains and one Sulfurihydrogenibium strain isolated from terrestrial springs in the Uzon Caldera and the Geyser Valley of Kamchatka, Russia, but were absent in other phylogenetically closely related strains isolated from the same thermal systems. The arsenite-oxidation activities of these aroA-positive strains were also confirmed. The newly identified aroA- like sequences share high sequence similarity to aroA genes identified in other thermophilic bacteria, but still formed separate clades from previously identified aroA sequences. These results extend our knowledge of the diversity and distribution of Mo-pterin arsenite oxidases in the Aquificales, an important step in understanding the evolutionary relationships of deeply-rooted bacterial arsenite oxidases relative to the diversity of aroA-like genes now known to exist across the bacterial domain.
    [Show full text]
  • Thermostable Rnase P Rnas Lacking P18 Identified in the Aquificales
    JOBNAME: RNA 12#11 2006 PAGE: 1 OUTPUT: Wednesday September 27 16:21:46 2006 csh/RNA/125782/rna2428 Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REPORT Thermostable RNase P RNAs lacking P18 identified in the Aquificales MICHAL MARSZALKOWSKI,1 JAN-HENDRIK TEUNE,2 GERHARD STEGER,2 ROLAND K. HARTMANN,1 and DAGMAR K. WILLKOMM1 1Philipps-Universita¨t Marburg, Institut fu¨r Pharmazeutische Chemie, D-35037 Marburg, Germany 2Heinrich-Heine-Universita¨tDu¨sseldorf, Institut fu¨r Physikalische Biologie, D-40225 Du¨sseldorf, Germany ABSTRACT The RNase P RNA (rnpB) and protein (rnpA) genes were identified in the two Aquificales Sulfurihydrogenibium azorense and Persephonella marina. In contrast, neither of the two genes has been found in the sequenced genome of their close relative, Aquifex aeolicus. As in most bacteria, the rnpA genes of S. azorense and P. marina are preceded by the rpmH gene coding for ribosomal protein L34. This genetic region, including several genes up- and downstream of rpmH, is uniquely conserved among all three Aquificales strains, except that rnpA is missing in A. aeolicus. The RNase P RNAs (P RNAs) of S. azorense and P. marina are active catalysts that can be activated by heterologous bacterial P proteins at low salt. Although the two P RNAs lack helix P18 and thus one of the three major interdomain tertiary contacts, they are more thermostable than Escherichia coli P RNA and require higher temperatures for proper folding. Related to their thermostability, both RNAs include a subset of structural idiosyncrasies in their S domains, which were recently demonstrated to determine the folding properties of the thermostable S domain of Thermus thermophilus P RNA.
    [Show full text]
  • Thermotoga Heats up Lateral Gene Transfer John M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Dispatch R747 Evolutionary genomics: Thermotoga heats up lateral gene transfer John M. Logsdon, Jr. and David M. Faguy The complete sequence of the bacterium Thermotoga having the largest (by far) fraction of archaeal-like genes maritima genome has revealed a large fraction of observed in a bacterial species. The high fraction of genes most closely related to those of archaeal species. archaeal-like genes is found in the T. maritima gene even This adds to the accumulating evidence that lateral though the comparisons included the previously gene transfer is a potent evolutionary force in determined A. aeolicus genome, though the converse is prokaryotes, though questions of its magnitude remain. not true. Indeed, others have made strong claims for “massive gene exchange” between A. aeolicus and Address: Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada. archaeal thermophiles [8], yet it appears that the extent of E-mail: [email protected] archaeal genes in T. maritima is even greater. There is little doubt that T. maritima is a member of the Bacteria, Current Biology 1999, 9:R747–R751 and over half of its genes (though only just) appear bacte- 0960-9822/99/$ – see front matter rial in origin. Although many of the archaeal-like T. mar- © 1999 Elsevier Science Ltd. All rights reserved. itima genes appear to be involved in metabolic functions, such as transport and energy metabolism, it is perhaps Prokaryotes exchange genes on a regular basis, especially surprising that at least some are involved in such presum- under highly selective conditions (such as in the presence ably more general (‘core’) functions as transcription and of antibiotics).
    [Show full text]