No Gibberish Spoken Here Not All Pollinators Are Honey Bees
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two New Taxa of Verticordia (Myrtaceae: Chamelaucieae) from South-Western Australia
A.S.Nuytsia George 20: 309–318 & M.D. (2010)Barrett,, Two new taxa of Verticordia 309 Two new taxa of Verticordia (Myrtaceae: Chamelaucieae) from south-western Australia Alex S. George1 and Matthew D. Barrett2,3 1 ‘Four Gables’, 18 Barclay Road, Kardinya, Western Australia 6163 Email: [email protected] 2 Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Ave, West Perth, Western Australia 6005 3 School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009 Email: [email protected] Abstract George, A.S. and Barrett, M.D. Two new taxa of Verticordia (Myrtaceae: Chamelaucieae) from south- western Australia. Nuytsia 20: 309–318 (2010). Verticordia mitchelliana subsp. implexior A.S.George & M.D.Barrett and Verticordia setacea A.S.George are described and discussed. Verticordia setacea belongs with V. gracilis A.S.George in section Platandra, previously a monotypic section. Introduction The genus Verticordia DC. (Myrtaceae: tribe Chamelaucieae) is a charismatic group of shrubs found mainly in south-western Australia, with several species in adjacent arid regions and three in tropical Australia (George 1991; George & Pieroni 2002). Verticordia is currently defined solely on the possession of divided calyx lobes, but the limits between Verticordia and the related genera Homoranthus A.Cunn. ex Schauer, Chamelaucium Desf. and Darwinia Rudge are difficult to define conclusively, and other characteristics such as anther morphology suggest conflicting relationships (Bentham 1867; Craven & Jones 1991; George 1991). A recent analysis using a single chloroplast gene, with limited sampling of Verticordia taxa (Ma et al. 2002), suggests that Verticordia may be polyphyletic. -
Variation in Seed Production and Germination in 22 Rare and Threatened Western Australian Verticordia (Myrtaceae)
Journal of the Royal Society of Western Australia, 84:103-110, 2001 Variation in seed production and germination in 22 rare and threatened Western Australian Verticordia (Myrtaceae) A Cochrane1, K Brown2, S Cunneen3 & A Kelly4 1Threatened Flora Seed Centre, Department of Conservation and Land Management, Locked Bag 104, Bentley Delivery Centre, Perth WA 6983 2Environmental Weeds Action Network, 108 Adelaide Terrace, East Perth WA 6000 3CSIRO Centre for Mediterranean Agricultural Research, Floreat WA 6014 424 Carnarvon St, East Victoria Park WA 6100 email: [email protected] Manuscript received August 2000, accepted March 2001 Abstract This study investigates the reproductive potential of 22 rare and threatened Western Australian taxa in the genus Verticordia (Myrtaceae) over a 5-year period. Considerable inter- and intra-specific variation in both seed production and germinability was demonstrated for the majority of taxa. The seed to flower ratio, or “seed set”, ranged from 0% to 68% with an overall mean of 21% in 82 accessions representing seed from 48 populations of the 22 taxa. Percentage germination ranged from 7% to 100% with an average of 49% for 68 accessions. The precariously low annual reproductive capacity of some of the more restricted and critically endangered taxa threatens their survival and unexpected disturbance events may result in population decline or even localised extinction. Mitigation measures such as the reintroduction of plant material into new sites and the enhancement of existing populations through additional plantings may be warranted for many of Western Australia’s rare and threatened Verticordia. Keywords: Verticordia, seed production, germination Introduction prominently displayed feathery flowers are borne singly but appear as heads or spikes and are generally brightly Verticordia (family Myrtaceae, sub-family coloured, ranging from yellow to red to purple. -
Complete Chloroplast Genomes Shed Light on Phylogenetic
www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya. -
Newsletter No. 291 – November 2013
Newsletter No. 291 – November 2013 OCTOBER MEETING Members’ Night Tips:- Matt Baars talked to us about a problem plaguing File away from the cutting edge, not towards us all … keeping our cutting tools sharp. The it. This helps to avoid injury. requirements are basic – Push the file forward and across the edge. A couple of good quality, reasonably fine files. Small serrations left by the file aid in cutting. They should be sharp and you should feel Stainless steel is not ideal for cutting tools like them cutting the metal of the tool. If they run clippers and secateurs as it will not hold an over it like a glass bottle they are blunt and edge. should be discarded. Files are used on the Carbon steel holds an edge, but will rust. blades of clippers, pruners, secateurs, axes Keep tools in good order and avoid rust by and spades. spraying with WD40 or similar. A diamond sharpening steel for fine finishing Cheap tools usually won’t hold an edge, or of knives. These have small industrial diamond can’t be resharpened. powder imbedded for fine grinding. Whet stone for fine finishing of knives and Benjamin Scheelings has been experimenting with chisels. Lubricate these with oil or kerosene. Australian natives as subjects for bonsai. He brought Emory paper for fine finishing also. Nail a strip along a beautiful little Moreton Bay fig – Ficus to a block of wood for ease of use. macrophylla, a Banksia serrata, and his latest project – a Melaleuca forest! An electric grinding wheel to make larger jobs Benji suggests looking for plants with small leaves to easier – not necessary, but a good tool. -
Plant Perennials This Fall to Enjoy Throughout the Year Conditions Are Perfect for Planting Perenni - Esque Perennials Like Foxglove, Delphinium, Next
Locally owned since 1958! Volume 26 , No. 3 News, Advice & Special Offers for Bay Area Gardeners FALL 2013 Ligularia Cotinus Bush Dahlias Black Leafed Dahlias Helenium Euphorbia Coreopsis Plant perennials this fall to enjoy throughout the year Conditions are perfect for planting perenni - esque perennials like Foxglove, Delphinium, next. Many perennials are deer resistant (see als in fall, since the soil is still warm from the Dianthus, Clivia, Echium and Columbine steal our list on page 7) and some, over time, summer sun and the winter rains are just the show. In the summertime, Blue-eyed need to be divided (which is nifty because around the corner. In our mild climate, Grass, Lavender, Penstemon, Marguerite and you’ll end up with more plants than you delightful perennials can thrive and bloom Shasta Daisies, Fuchsia, Begonia, Pelargonium started with). throughout the gardening year. and Salvia shout bold summer color across the garden. Whatever your perennial plans, visit Sloat Fall is when Aster, Anemone, Lantana, Garden Center this fall to get your fall, win - Gaillardia, Echinacea and Rudbeckia are hap - Perennials are herbaceous or evergreen ter, spring or summer perennial garden start - pily flowering away. Then winter brings magi - plants that live more than two years. Some ed. We carry a perennial plant, for every one, cal Hellebores, Cyclamen, Primrose and die to the ground at the end of each grow - in every season. See you in the stores! Euphorbia. Once spring rolls around, fairy- ing season, then re-appear at the start of the Inside: 18 favorite Perennials, new Amaryllis, Deer resistant plants, fall clean up and Bromeliads Visit our stores: Nine Locations in San Francisco, Marin and Contra Costa Richmond District Marina District San Rafael Kentfield Garden Design Department 3rd Avenue between 3237 Pierce Street 1580 Lincoln Ave. -
Micropropagation of Tulbaghia Species
MICROPROPAGATION OF TULBAGHIA SPECIES VIWE NOMZAMO PRECIOUS NGUNGE Submitted in fulfillment of the requirements for the degree of MASTER OF SCIENCE Research Centre for Plant Growth and Development School of Biological and Conservation Sciences University of KwaZulu-Natal, Pietermaritzburg March 2011 This work is dedicated to my brother Esethu Ngunge TABLE OF CONTENTS List of Figures ....................................................................................................... iv List of Tables ........................................................................................................ vi Student Declaration .......................................................................................... viii Declaration by supervisors ................................................................................. ix Faculty of Science and Agriculture Declaration 1- Plagiarism .......................... x Faculty of Science and Agriculture Declaration 2- Publications ..................... xi Acknowledgements ............................................................................................. xii Abstract ............................................................................................................... xiii List of Abbreviations .......................................................................................... xiv CHAPTER 1 Introduction ................................................................................... 1 1.1 DISTRIBUTION AND MORPHOLOGY............................................................. -
The Vase Life of Waxflower (Chamelaucium Desf.) Is Affected by the Weight Ratio of Flowers to Stem
FOLIA HORTICULTURAE Folia Hort. 28/2 (2016): 201-207 Published by the Polish Society DOI: 10.1515/fhort-2016-0024 for Horticultural Science since 1989 ORIGINAL ARTICLE Open access http://www.foliahort.ogr.ur.krakow.pl The vase life of waxflower Chamelaucium( Desf.) is affected by the weight ratio of flowers to stem Cao D. Dung1*, Kevin Seaton2, Zora Singh3 1 Potato, Vegetable and Flower Research Center Thai phien village, Ward 12, Da Lat, Lam Dong, Vietnam 2 Department of Agriculture and Food Western Australia 3 Baron-Hay Court, South Perth, WA 6151, Australia 3 Department of Environment and Agriculture Curtin University Kent St., Bentley, Perth, WA 6102, Australia ABSTRACT The effect of flower weight on changes in the vase life of flowers and leaves of waxflowers was studied by evaluating the arranged flower weight of cultivars derived from theChamelaucium uncinatum, Chamelaucium megalopetalum and Verticordia species. Competition for water and carbohydrates between flowers and leaves influenced vase life. The removal of flowers had at least four times the effect on leaf vase life as the removal of leaves on flower vase life. Supplying exogenous sucrose to satisfy the demand for carbohydrates negated this effect, indicating that flowers depend on carbohydrates being supplied from leaves to maintain vase life. Cultivars with a greater proportion of flowers (on a weight basis) improved the vase life of flowers at the expense of the leaves. Cultivars with large flowers or many small flowers or a greater weight ratio of flowers to stem appeared to draw more carbohydrates and water from the leaves, giving them a longer vase life and decreasing the vase life of the leaves. -
Five Types of Bulbs the Word “Bulb” Here Is Used As a Generic Term for Plants That Grow from Five Distinct Types of Underground Structures As Follows
Five Types of Bulbs The word “bulb” here is used as a generic term for plants that grow from five distinct types of underground structures as follows: True Bulbs (Hyacinth, Tulip, Daffodil) Tiny bulblets or bulbils attach themselves to the bulb. Dig bulbs and separate gently remove tiny bulbs from basal plate. Plant bulblets in out-of-the-way spot till mature enough for bloom. Corms (Gladiolus, Crocus, Freesia) to divide separate cormels from main corm. Plant in an out-of-the-way place till corms are large enough to flower. Tubers (Anemone (most), Tuberous Begonia, Florist Cyclamen) – To divide, dig and separate large tuber into two or more sections, making sure each section has at least one or two growth points. Rhizomes (Bearded Iris, Agapanthus, Anemone [some], Canna rhizomes produce new plants from growth points along their sides. To divide, break at narrowing points which seem to divide sections. Each “break” needs at least one growing point. Tuberous Roots – (Day Lily, Ranunculus, Dahlia) to divide, dig and cut apart so that each separated root has a growth bud. NOTE: Tulips and Hyacinth need winter chill for best bloom. Purchase bulbs around Labor Day and *chill in refrigerator in vented bag for at least six weeks prior to planting. *IMPORTANT: While bulbs are being stored in refrigerator it is important that no fruits are stored in same refrigerator. Bulbs in Pots: Planting depth: Mix at home potting medium: Daffodil 5 inches 1 part peat moss Hyacinth 4 inches 1 part compost Tulip 2½ times deep as bulb is wide 1 part builder’s sand Muscari 2-3 inches Fertilizer (according to package instructions) Crocus 2 inches Growing Instructions for bulbs pot: Place in full sunlight (at least six hours each day). -
Verticordia Study Grouf!
PLANTS VERTICORDIA STUDY GROUF! Since issue qf n'et.rsletter 1\10. I I have been pleased to 1.7elcome the following as active members of the Study Group :- Jennie vest is a member of Werribee Group S.G.A.Pd and has been appointed to represent that body in the'jactivities of the Verticordia Study Group. Glyn Sag@ has advised that he will shortly be leaving the 'address noted previously at Pononal to take up residence near GeeLongo Those of us in particular 7.ho have seen Glynts magnificent garden at Pomonal will wish him every success in his new area. Passive membership of the group includes ;- The yictorian region of S.G.A.P. The Ganberra Botanic Gardens Plant Sciences Library. The N.S.W. region of S.G.A.P. who kindly agreed to assist I , the Group financially for the initial years 1983 and 1984. - "! , ~, , ,,%-GENEML % 1 . COMNT ON PROGRESS. 'i, --$-----lA---J--+L----------4, ..r,. The Sydney sumner of I983/84 has been almost a non event with prolonged periods of wet and/or cool weather* Following the extraordic- arily dry summer of the previous year a useful opportunity has been provided to increase our understanding of the Verticordia genus and re-asses s proposals for cultural guidelines. From a personal point of view I found the current season nore difficult than the previous with a number of species, several of which I lost completely. On the other hand there were sone that came through with flying colourso As a basis for future member comment therefore I ?propose to make observations species by species progressively reviewing them in future Neh?sletters as appropriate from my own and other Group Members experienceso I look forward to the time when we will be in a position to nominate: with a greater degree of certainty, requirements for the establishment of many of then. -
Verticordia Study Group
S.G.1.P. QLD. REGION - LIBRARY - ASSOCIATION OF SOCIETIES FOR GROWING AUSTRALIAN PLANTS VERTICORDIA STUDY GROUP NEWSLETER NO 44 -- July 2005. MEMBERSHIP I am very pleased to welcome the following new members to our Study Group :- Bob Carroll, 23 Perigee Close, Doonside, NSW 2767 Bob comments:- "I know little about Verticordias except that they are mostly reputed to be acultto grow in my area; (Sydney"~outer western suburbs). I have had some success in the past growhg them in containers, but even then they did not live long, probably due to lack of skill and knowledge on my part. but I wish to learn more and would appreciate your advice" Ian Budge, RSM 6, Biddle Road, Dunsborough, W.A. 6281 Ian lives on a 100 acre property, 250 Km south of Perth and 6 Km fiom the sea.. He works as a Coordinator for Parks and Gardens in the Busselton Shire and says " My training in horticulture some 26 years ago still fuels the passion I have for W.A. Native Plants but my work rarely involves verticordia. My interest in verticordia can be blamed on Elizabeth A. George's book 'Verticordia, the Turner of Hearts' ;.an excellent layman's guide to this genus.-------I had the pleasure of meeting her in person at the Wildflower Society Landsdale Nursery where I was able to pick up a few rare and endangered species and try them out on our property. ,4bout 14 species have been planted in the last 12 months on our grey sand overlaying gravelly soil.-----They are doing well with occasional light watering during hot weather and protected by planter bags fiom clumsy roos and damaging rabbits. -
TELOPEA Publication Date: 13 October 1983 Til
Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance. -
Wild Garlic) from Southern Africa
ETHNOPHARMACOLOGICAL AND PHYTOCHEMICAL REVIEW OF ALLIUM SPECIES (SWEET GARLIC) AND TULBAGHIA SPECIES (WILD GARLIC) FROM SOUTHERN AFRICA SL Lyantagaye Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania. E-mail: [email protected], [email protected], Phone: +255-787537030 ABSTRACT Tulbaghia (wild Garlic) is a plant genus most closely related to the genus Allium both in the family Alliaceae and is entirely indigenous to Southern Africa. Indigenous people use several species of the genus as food and medicine, and few species are commonly grown as ornamentals. Biological and pharmacological research on Tulbaghia species and their relationship with Allium sativum (sweet Garlic) are presented and critically evaluated. Informations from studies on the treatment of microbes-caused diseases as well as of cancer have been presented in ethnobotanical reports. Moreover, recent scientific studies have been performed on crude extracts for certain Tulbaghia species as reviewed in this article. This article gives a critical assessment of the literature to date and aims to show that the pharmaceutical potential of the members of the genus Tulbaghia is comparable to that of its close relative A. sativum but has been underestimated and deserves closer attention. Keywords: Allium sativum, Ethnobotany, Ethnopharmacology, Medicinal, Phytochemical, Southern Africa, Tulbaghia INTRODUCTION species of Tulbaghia have been reported in Tulbaghia