FULL ACCOUNT FOR: Agapanthus Praecox Global Invasive Species Database (GISD) 2021. Species Profile Agapanthus Praecox. Available

Total Page:16

File Type:pdf, Size:1020Kb

FULL ACCOUNT FOR: Agapanthus Praecox Global Invasive Species Database (GISD) 2021. Species Profile Agapanthus Praecox. Available FULL ACCOUNT FOR: Agapanthus praecox Agapanthus praecox System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Liliopsida Liliales Liliaceae Common name African-lily (English), lirio africano (Spanish, Argentina), agapanthus (English), bloulelie (Afrikaans), lily-of-the-Nile (English), agapanto (Spanish, Argentina), common agapanthus (English), flor de Navidad (Spanish, Argentina), blue lily (English) Synonym Tulbaghia praecox , (Willd.) Kuntze Similar species Agapanthus africanus, Arthropodium cirratum Summary Agapanthus praecox is a rhizomatous herb that is native to South Africa, along with its subspecies, A. praecox subsp. minimus, A. praecox subsp. orientalis and A. praecox subsp. praecox. Most cultivated agapanthus are cultivars or hybrids of A. praecox, and the subspecies readily hybridise. Agapanthus has characteristic composite florescences that are white or blue and tubular and is commonly planted as an ornamental. view this species on IUCN Red List Species Description Agapanthus praecox is a rhizomatous, perennial herb. Its leaves are robust, strap-like and evergreen and there are 6 - 20 leaves per individual plant. The leaves grow in dense clumps from bulb up to 60 cm high. The composite inflorescences are large and round, made up of tubular flowers. These are either coloured white or light blue. Inflorescences can grow up to 1.2 m in summer. (ARC 2009; FloraBase 2010; Notten 2004; Weeds of Blue Mountains Bushland 2010). \n Notes Known subspecies of Agapanthus praecox include A. praecox ssp. minimus, A. praecox ssp. orientalis and A. praecox ssp. praecox. Subspecies readily hybridise, especially when grown in close proximity. In the Auckland region of New Zealand, the sale, propogation, planting and distribution of A. praecox is prohibited. However the miniature variety and culativars, along with A. praecox ssp. orientalis are allowed, despite being weedy (ARC 2009; ReportageEnviro 2010; Notten 2004; USDA, ARS 2007; Weeds of Blue Mountains Bushland 2010). The leaves, sap and rhizomes of A. praecox are highly toxic to humans and may cause ulceration of the mouth, skin rashes and burning sensations. Especially toxic to children. A. praecox appears on the FDA Poisonous Plant Database. (Barr 2001; DPI Vic 2008b). Global Invasive Species Database (GISD) 2021. Species profile Agapanthus praecox. Pag. 1 Available from: http://www.iucngisd.org/gisd/species.php?sc=1724 [Accessed 01 October 2021] FULL ACCOUNT FOR: Agapanthus praecox Uses Ornamental, medicinal (FloraBase 2010). Habitat Description Agapanthus praecox can grow almost anywhere and survives well in poor soil (FloraBase 2010). Adequate water is required in spring and summer. Preferred conditions for A. praecox growth include sun and semi-shade (ARC 2009), and soil that is well-drained, rich, and with plenty of organic matter (FloraBase 2010). Leaves are robust, and the plant is tolerant of frost (ARC 2009), hot and cold, wind, salt and heavy damage (Weedbusters 2010). Rhizomes and seeds are tolerant to sea immersion (Weedbusters 2010). A. praecox is easy to grow and it does well even in the poorest of soils, but it must receive some water in summer. To perform at its best, give it rich, well-drained soil with ample compost (decayed organic matter) and plenty of water in spring and summer. It prefers full sun. All the evergreen agapanthus are best lifted and divided every four years or so to ensure flowering. A. praecox will tolerate light frost, but is hardy only in the milder parts of the Northern Hemisphere, like the southwest of England and in the Mediterranean (Notten 2004) Reproduction Agapanthus praecox is a prolific seeder and primarily reproduces by seed. Reproduction also occurs via rhizomes. Seeds are produced in late summer into autumn, are small, black and shiny and are produced in a three sided capsule. Seed dispersal is effective, via wind, water, garden waste and contaminated soil. A. praecox germinates densely. (FloraBase 2010; Weedbusters 2010; Weeds of Blue Mountains Bushland 2010). General Impacts Agapanthus praecox can form very dense clumps and pure stands, which exclude all other vegetation. This can lead to suppression of growth of native species, and can result in massive biodiversity loss. The root network is very dense, and can also exclude native species. The roots can crack concrete, causing problems for walkways and roads. Growth on roadways can cause clogging of drains leading to flooding, which can damage roads. (DPI Vic 2008b; NPPA 2008; Weedbusters 2008). Global Invasive Species Database (GISD) 2021. Species profile Agapanthus praecox. Pag. 2 Available from: http://www.iucngisd.org/gisd/species.php?sc=1724 [Accessed 01 October 2021] FULL ACCOUNT FOR: Agapanthus praecox Management Info A Risk Assessment of Acacia farnesiana for Hawai‘i and other Pacific islands was prepared by Dr. Curtis Daehler (UH Botany) with funding from the Kaulunani Urban Forestry Program and US Forest Service. The alien plant screening system is derived from Pheloung et al. (1999) with minor modifications for use in Pacific islands (Daehler et al. 2004). The result is a score of 14 and a recommendation of: \"Likely to cause significant ecological or economic harm in Hawai‘i and on other Pacific Islands as determined by a high WRA score, which is based on published sources describing species biology and behaviour in Hawai‘i and/or other parts of the world.\" Agapanthus praecox can be controlled using mechnical techniques alone, or in conjunction with chemical methods. Scattered plants should be dug out, and corms and root fragments disposed of carefully (refuse transfer station or dry and burn). Another alternative is to crown the plant, and apply herbicide immediately after. While A. praecox doesn't respond well to most herbicides, this cut- and-paint method has been found to be effective. As plants often resprout and the seed bank can lead to reinfestation, follow up treatments are necessary. (PIER 2010; Weeds of Blue Mountains Bushland 2010; Weedbusters 2010). Pathway Principal source: Compiler: IUCN SSC Invasive Species Specialist Group (ISSG) with support from the Auckland Regional Council (ARC) Review: Pubblication date: 2010-09-01 ALIEN RANGE [1] ARGENTINA [7] AUSTRALIA [1] COOK ISLANDS [1] MARSHALL ISLANDS [1] NEW CALEDONIA [9] NEW ZEALAND [1] PORTUGAL [1] SPAIN [1] UNITED KINGDOM [2] UNITED STATES BIBLIOGRAPHY 51 references found for Agapanthus praecox Managment information Amots Dafni, Peter Kevan, Caroline L. Gross and Koichi Goka, 2010. Bombus terrestris, pollinator, invasive and pest: An assessment of problems associated with its widespread introductions for commercial purposes. Appl. Entomol. Zool. 45 (1): 101?113 (2010) Summary: Available from: http://www.jstage.jst.go.jp/article/aez/45/1/101/_pdf [Accessed June 14 2010] Chatham Islands Council (CIC) undated. Chatham Islands Pest Management Strategy 2008-2018. Summary: Available from: http://www.cic.govt.nz/pdfs/pestManagment/PestStrategy0818_ChathamstrategyPartIIPestManagementProgrammesSecti ons1-5.pdf [Accessed 30 August 2010] Global Invasive Species Database (GISD) 2021. Species profile Agapanthus praecox. Pag. 3 Available from: http://www.iucngisd.org/gisd/species.php?sc=1724 [Accessed 01 October 2021] FULL ACCOUNT FOR: Agapanthus praecox Departmant of Primary Industries Victoria (DPI Vic) 2008a. Invasiveness Assessment - Agapanthus (Agapanthus praecox subsp. orientalis) in Victoria. The State of Victoria, Australia. Summary: Available from: http://www.dpi.vic.gov.au/dpi/vro/vrosite.nsf/pages/invasive_agapanthus [Accessed 30 August 2010] Departmant of Primary Industries Victoria (DPI Vic) 2008b. Impact Assessment - Agapanthus (Agapanthus praecox subsp. orientalis) in Victoria. Summary: Available from: http://www.dpi.vic.gov.au/dpi/vro/vrosite.nsf/pages/impact_agapanthus [Accessed 30 August 2010] Department of Environment and Climate Change (NSW) 2007, Lord Howe Island Biodiversity Management Plan, Department of Environment and Climate Change (NSW), Sydney. Summary: Available from: http://www.environment.gov.au [Accessed June 14 2010] Department of Environment & Climate Change NSW 2007. Blue Mountains Region Pest Management Strategy 2007-2011. DECC, Sydney, NSW. Summary: Available from: http://www.environment.nsw.gov.au/resources/pestsweeds/07513BlueMtnsPestStrategy.pdf [Accessed June 14 2010] Environment Bay of Plenty 2010. Weed 229. Bay of Plenty Regional Council. Summary: Available from: http://www.envbop.govt.nz/Environment/Weed229.aspx [Accessed June 30 2010] Environment Waikato undated. Environment Waikato pest guide. Summary: Available from: http://www.ew.govt.nz/PageFiles/3599/Environment%20Waikato%20pest%20guide%20section%204%20-%20Nuisance% 20pests.pdf [Accessed 30 August 2010] FloraBase the Western Austalian Flora, 2010. Agapanthus praecox subsp. orientalis F.M.Leight. J.S.African Bot. Suppl.4:21 (1965) Summary: Available from: http://florabase.calm.wa.gov.au/browse/profile/18380 [Accessed June 14 2010] Gallagher, Rachael; Linda Beaumont; Paul O. Downey; Lesley Hughes and Michelle R. Leishman, 2006. Assessing the potential impacts of climate change on weeds in New South Wales: establishing priorities. Fifteenth Australian Weeds Conference Summary: Available from: http://www.caws.org.au/awc/2006/awc200610351.pdf [Accessed June 14 2010] Greater Wellington Regional Council 2010. Agapanthus (Agapanthus praecox). Summary: Available from: http://www.gw.govt.nz/agapanthus-agapanthus-praecox/ [Accessed June 29 2010] Healy, A.J., 1958. Contributions to a Knowledge
Recommended publications
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Summer Bulbs
    Garden Mastery Tips June 2008 from Clark County Master Gardeners Summer Bulbs Wasn't it easy to get that wonderful spring color? You dug a hole last fall and dropped in crocus, daffodil, hyacinth or tulip bulbs. Covered them up and went back inside to wait until spring. The hardest part was probably choosing which bulbs and colors to plant. Wouldn't it be nice to take care of your summer garden color the same way? Well, you can. There are summer bulbs, corms and rhizomes that need the same amount of care. You dig a hole, drop them in and voila!, in a few weeks, you have summer color. Again, the hardest part will be choosing what to plant. Here are some suggestions for you. Agapanthus – Agreeable Agapanthus, Love Flower Amaryllis Belladonna – What Do You Say to a Naked Lady? (Amaryllis belladonna) Calla Lilies – Supercalifragilisticexpialidocious "Lilies" Canna flowers are similar to Gladiolus, large clusters of flowers. But think steroids. These plants are big, brash and bold. Canna rhizomes should be planted in loose, fertile, well-drained soil. They don't have a top or bottom so just lay them in the ground and cover with about two inches of soil after all danger of hard frost has passed. For a really showy statement in your garden, plant a group. Again, the lazy gardener can mulch over the cannas and take a chance on their coming up the next year. A website full of information on Cannas can be found at Horn Canna Farm’s site. Croscosmia – Crocosmia Dahlias – Dahlia Success Eucomis – Eucomis Gladiolus is native to sub-Saharan Africa and contains about 260 species.
    [Show full text]
  • Success with Herbaceous Perennials
    Landscape Basics: Success with Herbaceous Perennials Bodie Pennisi, Paul Thomas and Sheri Dorn Department of Horticulture hether in a commercial installation or residen- fewer pest problems, require less water and pruning, Wtial garden, perennial plants can be successfully and have an extended flowering time. This information used to offer more landscaping choices, distinguish can be acquired from books, annual trade confer- your firm from the competition and create a niche for ences and Extension publications (refer to “Additional your landscape business. Perennial plants are complex, Resources” at the end of this publication). An excellent and it is best to contract or hire a professional land- way to see how new selections perform is to visit the scape architect for the design phase and train knowl- University of Georgia Trial Gardens located on campus edgeable staff in proper maintenance later on. in Athens (http://ugatrial.hort.uga.edu/). With a rich history of plant introductions, hybridiza- This publication is intended to provide the basics of tion and selection, we can now enjoy plants in Georgia perennial plant biology, ideas on design and installa- that until recently were once found only on a remote tion, and information on cultivation and maintenance mountain slope in Asia or a tropical rainforest in South of perennial beds. It should also serve as a quick guide America. The perennial plant trade offers more than for the most common and recommended perennials 3,600 species and cultivated varieties, and more are for Georgia. Common-sense tips from a professional added each year. With such an extensive palette, how landscaper’s perspective are also included.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • The Fairchild Tropical Garden NIXON SMILEY ______1
    ~GAZ.NE AMERICAN HORTI CULTURAL SOCIETY A vnion of the Ame'rican Horticultuml Society and the American Ho·rticultural Council 1600 BLADENSB URG ROAD, NORTHEAST . WASHINGTON 2, D. C. For Un ited H mticulture *** to accumulate, increase, and disseminate horticultuml infmmation B. Y. MORRISON, Editor Di?-ec to?'S T enns Expiring 1960 J AMES R. H ARLOW, Managing Editor D ONOVAN S. CORRELL T exas CARL "V. F ENN I NGER Editorial Committee Pennsylvania W. H . HODGE W'. H . HODGE, Chainnan Pen nS)1 Ivan i(~ ] OHN L. CREECH A. J. IRVI NG Yo?'k FREDElRI C P. L EE New "VILLIAM C. STEERE CONRAD B. LI NK New York CURTIS MAY FREDERICK G. MEYER T erms Ex1Jil'ing 1961 STUART M. ARMSTRONG 'WILBUR H. YOUNGMAN Maryland J OHN L. CREECH Maryland Officers 'WILLIAM H . FREDERICK, JR. DelawQ.j·e PR ES IDENT FRANCIS PATTESON-KNIGHT RICHARD P . 'WHITE V il'ginia Washington, D. C. DONALD WYMAN 111 assachv.setts FIRST VICE·PRESIDENT Tenns Expiring 1962 DONALD W YMAN Jamaica Plain, Massachusetts FREDERIC P. LEE Maryland HENRY T. SKINNER SECOND VICE- PRESIDENT Distl'ict of Columba STUART M. ARMSTRONG CEORGE H. SPALDING Silvel' Spring, Mal'yland California RICHARD P. WHITE SECRETARY-TREASURER District of Columbia OLIVE E. WEATHERELL AN NE " VERTSNER WOOD Washington, D. C. Pennsylvania The Amel'ican Ho'yticvltw'al Magazine is the official publication of the American Horticultural Society and is issued fo ur times a year during the q uarters commencing with January, April , July and October. It is devoted to the dissemination of knowledge in the science and art of growing ornamental plants, fruits, vegetables, and related subjects.
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Plant Perennials This Fall to Enjoy Throughout the Year Conditions Are Perfect for Planting Perenni - Esque Perennials Like Foxglove, Delphinium, Next
    Locally owned since 1958! Volume 26 , No. 3 News, Advice & Special Offers for Bay Area Gardeners FALL 2013 Ligularia Cotinus Bush Dahlias Black Leafed Dahlias Helenium Euphorbia Coreopsis Plant perennials this fall to enjoy throughout the year Conditions are perfect for planting perenni - esque perennials like Foxglove, Delphinium, next. Many perennials are deer resistant (see als in fall, since the soil is still warm from the Dianthus, Clivia, Echium and Columbine steal our list on page 7) and some, over time, summer sun and the winter rains are just the show. In the summertime, Blue-eyed need to be divided (which is nifty because around the corner. In our mild climate, Grass, Lavender, Penstemon, Marguerite and you’ll end up with more plants than you delightful perennials can thrive and bloom Shasta Daisies, Fuchsia, Begonia, Pelargonium started with). throughout the gardening year. and Salvia shout bold summer color across the garden. Whatever your perennial plans, visit Sloat Fall is when Aster, Anemone, Lantana, Garden Center this fall to get your fall, win - Gaillardia, Echinacea and Rudbeckia are hap - Perennials are herbaceous or evergreen ter, spring or summer perennial garden start - pily flowering away. Then winter brings magi - plants that live more than two years. Some ed. We carry a perennial plant, for every one, cal Hellebores, Cyclamen, Primrose and die to the ground at the end of each grow - in every season. See you in the stores! Euphorbia. Once spring rolls around, fairy- ing season, then re-appear at the start of the Inside: 18 favorite Perennials, new Amaryllis, Deer resistant plants, fall clean up and Bromeliads Visit our stores: Nine Locations in San Francisco, Marin and Contra Costa Richmond District Marina District San Rafael Kentfield Garden Design Department 3rd Avenue between 3237 Pierce Street 1580 Lincoln Ave.
    [Show full text]
  • Micropropagation of Tulbaghia Species
    MICROPROPAGATION OF TULBAGHIA SPECIES VIWE NOMZAMO PRECIOUS NGUNGE Submitted in fulfillment of the requirements for the degree of MASTER OF SCIENCE Research Centre for Plant Growth and Development School of Biological and Conservation Sciences University of KwaZulu-Natal, Pietermaritzburg March 2011 This work is dedicated to my brother Esethu Ngunge TABLE OF CONTENTS List of Figures ....................................................................................................... iv List of Tables ........................................................................................................ vi Student Declaration .......................................................................................... viii Declaration by supervisors ................................................................................. ix Faculty of Science and Agriculture Declaration 1- Plagiarism .......................... x Faculty of Science and Agriculture Declaration 2- Publications ..................... xi Acknowledgements ............................................................................................. xii Abstract ............................................................................................................... xiii List of Abbreviations .......................................................................................... xiv CHAPTER 1 Introduction ................................................................................... 1 1.1 DISTRIBUTION AND MORPHOLOGY.............................................................
    [Show full text]
  • No Gibberish Spoken Here Not All Pollinators Are Honey Bees
    walterandersen.com facebook.com/walterandersens twitter.com/walterandersens online store videos San Diego’s Independent Nursery Since 1928 TM APRIL 2017 IN THIS ISSUE Not All Pollinators Are Honey Bees By Ken Andersen Pollinators 1 European Honey Bees are what we usually think of when we think of pol- No Gibberish Spoken Here 1 linators in the garden. While they do a Agapanthus, Agapanthus 1 fair share of the pollinating, there are Poway Rose Show 2 other bees at work like Mason Bees. Words From Walter: Plumeria 3 Mason Bees (Osmia lignaria if you To Do List: April 3 want to get technical) are prodigious Heavenly Bamboo 4 pollinators but they differ from Honey Choosing Tomato Varieties 5 Bees in a few distinct ways. They are solitary bees in that they do not have Old Ben: Western Wood-Pewee 6 a social order nor do they form hives DIG Irrigation Class 7 or have queens. Once they mate they April Garden Classes 7 will lay eggs in small round holes they will find in nature. When they lay their eggs they will leave a supply of pollen for the larva to feed on until they mature and emerge. Mason Bee habitat Agapanthus, Agapanthus, Even though they do not live in hives, combs to fill. One other difference they are perfectly happy to make nests that many will appreciate is they tend Agapanthus & More next to each other. Mason Bees do not not to sting. Since they do not have Agapanthus produce honey so they don’t create a colony, honey, or queen to protect By Walter Andersen, Jr.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Five Types of Bulbs the Word “Bulb” Here Is Used As a Generic Term for Plants That Grow from Five Distinct Types of Underground Structures As Follows
    Five Types of Bulbs The word “bulb” here is used as a generic term for plants that grow from five distinct types of underground structures as follows: True Bulbs (Hyacinth, Tulip, Daffodil) Tiny bulblets or bulbils attach themselves to the bulb. Dig bulbs and separate gently remove tiny bulbs from basal plate. Plant bulblets in out-of-the-way spot till mature enough for bloom. Corms (Gladiolus, Crocus, Freesia) to divide separate cormels from main corm. Plant in an out-of-the-way place till corms are large enough to flower. Tubers (Anemone (most), Tuberous Begonia, Florist Cyclamen) – To divide, dig and separate large tuber into two or more sections, making sure each section has at least one or two growth points. Rhizomes (Bearded Iris, Agapanthus, Anemone [some], Canna rhizomes produce new plants from growth points along their sides. To divide, break at narrowing points which seem to divide sections. Each “break” needs at least one growing point. Tuberous Roots – (Day Lily, Ranunculus, Dahlia) to divide, dig and cut apart so that each separated root has a growth bud. NOTE: Tulips and Hyacinth need winter chill for best bloom. Purchase bulbs around Labor Day and *chill in refrigerator in vented bag for at least six weeks prior to planting. *IMPORTANT: While bulbs are being stored in refrigerator it is important that no fruits are stored in same refrigerator. Bulbs in Pots: Planting depth: Mix at home potting medium: Daffodil 5 inches 1 part peat moss Hyacinth 4 inches 1 part compost Tulip 2½ times deep as bulb is wide 1 part builder’s sand Muscari 2-3 inches Fertilizer (according to package instructions) Crocus 2 inches Growing Instructions for bulbs pot: Place in full sunlight (at least six hours each day).
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]