A Review of Bycatch and Discard Issues in Indian Ocean Tuna Fisheries

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Bycatch and Discard Issues in Indian Ocean Tuna Fisheries SmartFish Working Papers No 00X A Review of Bycatch and Discard Issues in Indian Ocean Tuna Fisheries Prepared by Ardill, D., D. Itano and R. Gillett This publication has been produced with the assistance of the European Union. The contents of this publication are the sole responsibility of the author and can in no way reflect the views of the European Union. La bonne gouvernance et de la gestion des pêches et de By improving the governance and management of our l'aquaculture permettent d'améliorer la contribution du fisheries and aquaculture development, we can also secteur à la sécurité alimentaire, au développement social, improve food security, social benefits, regional trade and à la croissance économique et au commerce régional ; increase economic growth, while also ensuring that we ceci en assurant par ailleurs une protection renforcée des protect our fisheries resources and their ecosystems. ressources halieutiques et de leurs écosystèmes. The Indian Ocean Commission (IOC), the Common La Commission de l'Océan Indien (COI) ainsi que la Market for Eastern and Southern Africa (COMESA), the COMESA (Common Market for Eastern and Southern East African Community (EAC) and the Inter- Africa), l'EAC (East African Community) et l'IGAD Governmental Authority on Development (IGAD) have (Inter-Governmental Authority on Development) ont developed strategies to that effect and committed to développé des stratégies à cette fin et se sont engagés à regional approaches to the promotion of responsible promouvoir la pêche et l'aquaculture responsable. fisheries and aquaculture. SmartFish supporte la mise en œuvre de ces stratégies SmartFish is supporting the implementation of these régionales en mettant l'accent sur le renforcement des regional fisheries strategies, through capacity building capacités et des interventions connexes visant à : and related interventions aimed specifically at: • la mise en œuvre d’un développement et d’une • implementing sustainable regional fisheries man- gestion durables des pêcheries ; agement and development; • le lancement d’un cadre de gouvernance pour les • initiating a governance framework for sustain- pêcheries durables dans la région; able regional fisheries; • le développment d’un suivi-contrôle-surveillance • developing effective monitoring, control and sur- efficace pour les ressources halieutiques veillance for trans boundary fisheries resources; transfrontalières ; • developing regional trade strategies and imple- • le développment de stratégies commerciales menting regional trade initiatives; regionals et la mise en œuvre d’initiatives • contributing to food security through the reduc- commerciales; tion of post-harvest losses and diversification. • l’amélioration de la sécurité alimentaire à travers la SmartFish is financed by the European Union under the 10th réduction des pertes post-capture et la European Development Fund. diversification. SmartFish is implemented by the IOC in partnership SmartFish est financé par l'Union Européenne dans le with the COMESA, EAC, and IGAD and in cadre du 10ème Fond Européen de Développement. collaboration with SADC. An effective collaboration with all relevant regional fisheries organisations has also SmartFish est mis en œuvre par la COI en partenariat avec been established. Technical support is provided by Food la COMESA, l'EAC et l'IGAD et en collaboration avec la and Agriculture Organization (FAO) and the Agrotec SADC. Une collaboration étroite a également été SpA consortium. développée avec les organisations régionales de pêche de la région. L'assistance technique est fournie par la FAO et le consortium Agrotec SpA. Contact: Indian Ocean Commission-SmartFish Programme Q4 Sir Guy Forget Avenue – P.O. Box 7, Quatres Bornes, Mauritius Tel: (+230) 427 6502 Fax: (+230) 425 7952 Table of Contents Abstract..................................................................................................................................3 Introduction.......................................................................................................................5 Definitions and concepts...................................................................................................6 Issues related to target catch....................................................................................7 Yellowfin and bigeye tunas in surface fisheries.............................................8 Fish sizes by gear............................................................................................9 Indian Ocean tuna fisheries included in this study............................................................9 IOTC Resolutions – the regulatory framework...............................................................10 Stock status of target and bycatch species.............................................................12 The “target species”............................................................................12 Neritic tunas and billfish.....................................................................12 Other finfish........................................................................................13 Shark catches................................................................................................13 Blue sharks..........................................................................................13 Shortfin Mako sharks..........................................................................13 Oceanic Whitetip shark ......................................................................14 Silky sharks.........................................................................................14 Other sharks and rays..........................................................................14 IUCN classification.............................................................................14 Bycatch and discards in tuna fisheries.............................................................................15 Pole-and-line, including their associated bait fishery............................................15 Longline.................................................................................................................15 Asian tropical and temperate tuna longline..................................................15 Bycatch data reported by longline fleet..............................................16 Japan..........................................................................................17 Korea..........................................................................................18 Taiwan........................................................................................18 China..........................................................................................18 Indonesia....................................................................................18 Spanish and Portuguese swordfish longline.................................................18 French swordfish longline............................................................................19 South African longline .................................................................................20 Estimated total Blue shark and Shortfin Mako catches................................21 Depredation in longline fisheries..................................................................21 Bait use.........................................................................................................21 The European purse seine fishery..........................................................................21 The effect of Piracy on purse seine fisheries ...............................................24 Mitigation...............................................................................................................25 Pole-and-line.......................................................................................25 Longline..............................................................................................25 Purse seine...........................................................................................27 Substitution of pole-and-line for purse seine fisheries.................................28 Pole-and-line trials in the Indian Ocean..............................................28 Carbon footprint of tuna fisheries.......................................................29 Conclusions.....................................................................................................................30 1 Stock status...................................................................................................30 Bycatch and discards....................................................................................30 Mitigation.....................................................................................................31 Pole-and-line.......................................................................................31 Purse seine...........................................................................................31 Longline .............................................................................................31 Other ecological issues.................................................................................32 Enforcement and verification.......................................................................32 Closing comments........................................................................................32 References.......................................................................................................................34
Recommended publications
  • A COMPARATIVE ACCOUNT of the SMALL PELAGIC FISHERIES in the APFIC REGION by M
    A COMPARATIVE ACCOUNT OF THE SMALL PELAGIC FISHERIES IN THE APFIC REGION by M. Devaraj and E. Vivekanandan Central Marine Fisheries Research Institute Cocbin-682014, India Abstract The production of the small pe/agics in the APFIC region was 1.2 mt/sq. km during 1995. Among the four areas in the region, the small pe/agics have registered (i) the maximum annual fluctuations in the western Indian Ocean; (ii) the highest increase duri'}i the past two decades along the west coast of Thailand in the eastern Indian Ocean; and (iii) the consistent decline in the landings during the past one decade along the Japanese coast in the northwest Pacific Ocean. The short rnackerels emerged as the largest fishery in the APFlC region, fom'ing 19.5% of the landings of the small pelagics in 1995. The group consisting afthe sardines and the anchovies has shown clear signs of decline during the past one decade in almost the entire region. Most of the small pelagics have unique biological characteristics such as fast growth, short longevity, late maturity, high nalllral mortality, shoaling behaviour, high fecundity and severe recruitment fluctuations. As many species of the small pelagics undertake migration, collaborative research programmes and close coordination are required among the APFle countries for the stock assessment of all the major species. The management measures under implementation in these countries have been reviewed, with suggestions for regional cooperation for the management of the stocks of the small pelagics. INTRODUCTION The Asia-Pacific Fishery Commission covers four oceanic areas, which have been classified by the FAO as the western Indian Ocean (FAO Statistical Area 51), eastern Indian Ocean (Area 57) , northwest Pacific Ocean (Area 61) and western central Pacific Ocean (Area 71).
    [Show full text]
  • Why Study Bycatch? an Introduction to the Theme Section on Fisheries Bycatch
    Vol. 5: 91–102, 2008 ENDANGERED SPECIES RESEARCH Printed December 2008 doi: 10.3354/esr00175 Endang Species Res Published online December xx, 2008 Contribution to the Theme Section ‘Fisheries bycatch problems and solutions’ OPENPEN ACCESSCCESS Why study bycatch? An introduction to the Theme Section on fisheries bycatch Candan U. Soykan1,*, Jeffrey E. Moore2, Ramunas ¯ 5ydelis2, Larry B. Crowder2, Carl Safina3, Rebecca L. Lewison1 1Biology Department, San Diego State University, 5500 Campanile Dr., San Diego, California 92182-4614, USA 2Center for Marine Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort,North Carolina 28516, USA 3Blue Ocean Institute, PO Box 250, East Norwich, New York 11732, USA ABSTRACT: Several high-profile examples of fisheries bycatch involving marine megafauna (e.g. dolphins in tuna purse-seines, albatrosses in pelagic longlines, sea turtles in shrimp trawls) have drawn attention to the unintentional capture of non-target species during fishing operations, and have resulted in a dramatic increase in bycatch research over the past 2 decades. Although a number of successful mitigation measures have been developed, the scope of the bycatch problem far exceeds our current capacity to deal with it. Specifically, we lack a comprehensive understanding of bycatch rates across species, fisheries, and ocean basins, and, with few exceptions, we lack data on demographic responses to bycatch or the in situ effectiveness of existing mitigation measures. As an introduction to this theme section of Endangered Species Research ‘Fisheries bycatch: problems and solutions’, we focus on 5 bycatch-related questions that require research attention, building on exam- ples from the current literature and the contributions to this Theme Section.
    [Show full text]
  • Ecosystem-Based Fisheries Management Improving the Resilience of Ocean Ecosystems to Support Fish Populations, Coastal Communities
    A brief from March 2014 Ecosystem-Based Fisheries Management Improving the resilience of ocean ecosystems to support fish populations, coastal communities The fish on the end of your line, the little forage fish that feed the big fish, the corals that build reef habitats, and the catch of the day in your favorite restaurant are interconnected parts of a vibrant ocean ecosystem. Ensuring the long-term health of important marine species will depend upon our ability to understand and account for the interactions among those species, their environment, and the people who rely upon them for food, commerce, and sport. This comprehensive approach, called ecosystem-based fisheries management, is needed to conserve the healthy ecosystems essential to the sustainability of our fisheries and to deal with the increasingly complex challenges facing our oceans. The United States is a global leader in fisheries management and has made great strides in ending overfishing (the problem of catching fish faster than they can reproduce) and rebuilding vulnerable populations under the Magnuson-Stevens Fishery Conservation and Management Act—the primary law governing U.S. ocean fisheries. In many regions of our nation, this progress has helped reestablish more abundant fish populations and created economic benefits for the fishing industry and coastal communities. Core conservation policies added to the law in 1996 and 2007 are fundamental to improving individual fish populations and returning value to fishermen. We must maintain them as the foundation for sustainable management. But the United States should make the transition from a species-by-species approach to ecosystem-based fisheries management to meet the rising and urgent challenges of damaged ocean environments and dynamic, changing oceans.
    [Show full text]
  • Movement Patterns and Habitat Use of the Silver Tip Shark (Carcharhinus Albimarginatus) at the Revillagigedo Archipelago
    Movement patterns and habitat use of the silver tip shark (Carcharhinus albimarginatus) at the Revillagigedo Archipelago Gádor Muntaner López Curso 2015/2016 Dra. Mª Milagrosa Gómez Cabrera Dr. Edgar Mauricio Hoyos Padilla Trabajo de Fin de Título para la obtención del título de graduado en Ciencias del Mar Trabajo de Fin de Título Grado en Ciencias del Mar Facultad de Ciencias del Mar Movement patterns and habitat use of the silver tip shark (Carcharhinus albimarginatus) at the Revillagigedo Archipelago Trabajo presentado por Gádor Muntaner López para la obtención del título de graduado en Ciencias del Mar en la Universidad de Las Palmas de Gran Canaria, dirigido por la Dra. Mª Milagrosa Gómez Cabrera y el Dr. Edgar Mauricio Hoyos Padilla del grupo de investigación Ecofisiología de los Organismos Marinos (EOMAR) y de Pelagios Kakunjá A.C., respectivamente. Universidad de Las Palmas de Gran Canaria En Las Palmas a 11 de julio de 2016 El alumno Fdo.: Gádor Muntaner López Los directores Fdo.: María M. Gómez Cabrera Fdo: Edgar Mauricio Hoyos Padilla 2 Índex ABSTRACT .............................................................................................................................................. 4 INTRODUCTION ................................................................................................................................... 5 MATERIAL AND METHODS.............................................................................................................. 8 Study area .........................................................................................................................................
    [Show full text]
  • Proceedings of the United States National Museum
    NOTES ON THE FISHES OF HAWAII, WITH DESCRIP- TIONS OF SIX NEW SPECIES By Eric Knight Jordan Of Stanford University, California The present writer spent the month of August, 1924, at Honolulu, in company with his father, David Starr Jordan, in attendance at the Pan-Pacific Food Conservation Conference. All his available time was spent in collection and study at the fish markets. Of the large collections obtained, the first series was sent to Cornell Uni- versity, the second to the University of Minnesota, and smaller series to Chicago University, to the Imperial University of Tokyo, and to Brigham Young University. The types of new species were placed in the United States National Museum, which institution publishes the present notes. The plates are the work of the late William S. Atkinson, artist in zoology and botany, at Stanford I'niversity. The writer is indebted to his father for many suggestions, es- pecially for aid in the determination of species. Prof. Frederick G. Krauss, of the University of Hawaii, has given him important assist- ance in connection with this work, and the Matson Navigation Com- pany has shown the special courtesy of transporting the collections without charge to San Francisco. In this paper I have included references to all species added to the Hawaiian fauna since the publication in 1922 of Jordan and Jordan's List of the Fishes of Hawaii.'^ The most important of these additions are recorded in Henry W. Fowler's New or Little Known Hawaiian Fishes." References to the additional species se- <;ured by Mr. Fowler on his visit to Honolulu in the autumn of 1922, are made in the present paper.
    [Show full text]
  • Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S
    Journal of Geophysical Research: Oceans RESEARCH ARTICLE Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S. West Coast Key Points: Michael G. Jacox1,2 , Christopher A. Edwards3 , Elliott L. Hazen1 , and Steven J. Bograd1 • New upwelling indices are presented – for the U.S. West Coast (31 47°N) to 1NOAA Southwest Fisheries Science Center, Monterey, CA, USA, 2NOAA Earth System Research Laboratory, Boulder, CO, address shortcomings in historical 3 indices USA, University of California, Santa Cruz, CA, USA • The Coastal Upwelling Transport Index (CUTI) estimates vertical volume transport (i.e., Abstract Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are upwelling/downwelling) disproportionately productive relative to their surface area, particularly in the world’s major eastern • The Biologically Effective Upwelling ’ Transport Index (BEUTI) estimates boundary upwelling systems. Along oceanic eastern boundaries, equatorward wind stress and the Earth s vertical nitrate flux rotation combine to drive a near-surface layer of water offshore, a process called Ekman transport. Similarly, positive wind stress curl drives divergence in the surface Ekman layer and consequently upwelling from Supporting Information: below, a process known as Ekman suction. In both cases, displaced water is replaced by upwelling of relatively • Supporting Information S1 nutrient-rich water from below, which stimulates the growth of microscopic phytoplankton that form the base of the marine food web. Ekman theory is foundational and underlies the calculation of upwelling indices Correspondence to: such as the “Bakun Index” that are ubiquitous in eastern boundary upwelling system studies. While generally M. G. Jacox, fi [email protected] valuable rst-order descriptions, these indices and their underlying theory provide an incomplete picture of coastal upwelling.
    [Show full text]
  • Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean Andrew Bakun, Claude Ray, and Salvador Lluch-Cota
    CoaStalUpwellinO' and Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean Andrew Bakun, Claude Ray, and Salvador Lluch-Cota Abstract /1 Theseasonal intensity of wind-induced coastal upwelling in the western Indian Ocean is investigated. The upwelling off Northeast Somalia stands out as the dominant upwelling feature in the region, producing by far the strongest seasonal upwelling pulse that exists as a; regular feature in any ocean on our planet. It is surmised that the productive pelagic fish habitat off Southwest India may owe its particularly favorable attributes to coastal trapped wave propagation originating in a region of very strong wind-driven offshore trans­ port near the southern extremity of the Indian Subcontinent. Effects of relatively mild austral summer upwelling that occurs in certain coastal ecosystems of the southern hemi­ sphere may be suppressed by the effects of intense onshore transport impacting these areas during the opposite (SW Monsoon) period. An explanation for the extreme paucity of fish landings, as well as for the unusually high production of oceanic (tuna) fisheries relative to coastal fisheries, is sought in the extremely dissipative nature of the physical systems of the region. In this respect, it appears that the Gulf of Aden and some areas within the Mozambique Channel could act as important retention areas and sources of i "see6stock" for maintenance of the function and dillersitv of the lamer reoional biolooical , !I ecosystems. 103 104 large Marine EcosySlIlms ofthe Indian Ocean - . Introduction The western Indian Ocean is the site ofsome of the most dynamically varying-. large marine ecosystems (LMEs) that exist on our planet.
    [Show full text]
  • Review Article a Review of the Impacts of Fisheries on Open-Ocean
    ICES Journal of Marine Science (2017), doi:10.1093/icesjms/fsx084 Review Article A review of the impacts of fisheries on open-ocean ecosystems Guillermo Ortuno~ Crespo* and Daniel C. Dunn Marine Geospatial Ecology Lab, Nicholas School of the Environment, Box 90328, Duke University, Levine Science Research Center, Durham, NC 27708, USA *Corresponding author: tel: þ1 (919) 638 4783; fax: þ1 252 504 7648; e-mail: [email protected]. Ortuno~ Crespo, G. and Dunn, D. C. A review of the impacts of fisheries on open-ocean ecosystems. – ICES Journal of Marine Science, doi:10.1093/icesjms/fsx084. Received 30 August 2016; revised 14 April 2017; accepted 1 May 2017. Open-ocean fisheries expanded rapidly from the 1960s through the 1980s, when global fish catches peaked, plateaued and possibly began to decline. While catches remain at best stagnant, fishing effort globally continues to increase (Anticamara, J. A., Watson, R., Gelchu, A., and Pauly, D. 2011. Fisheries Research, 107: 131–136; Merrie, A., Dunn, D. C., Metian, M., Boustany, A. M., Takei, Y., Elferink, A. O., Ota, Y., et al. 2014. Global Environmental Change 27: 19–31). The likelihood of ecosystem impacts occurring due to fishing is related to fishing effort and is thus also expected to be increasing. Despite this rapid growth, ecological research into the impacts of fisheries on open-ocean environments has lagged behind coastal and deep-sea environments. This review addresses this knowledge gap by considering the roles fisheries play in con- trolling the open-ocean at three ecological scales: (i) species (population or stock); (ii) biological community; and (iii) ecosystem.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Midpacific Volume31 Issue1.Pdf
    Vol. XXXI. No. 1. Lii3ky January, 1926 !A'lt 1Priqralli HMLTN CLOS ED DU 62() M5 ITED STATES AUSTRALASIA HAWAII ORIENT JAVA News Co. Gordon & Gotch Pan-Pacific Union Kelly & Walsh Javasche Boekhandel Trans-Pacific Transportation The Matson Navigation Company is palatial steamers between Honolulu and planning big things for Hawaii in many Los Angeles. The steamers visit Hilo ways. It is behind the great new Royal for the Volcano trip. The B. F. Dilling- Hawaiian Hotel at Waikiki, and is en- ham Co., Ltd., are Honolulu agents for thusing the people of Honolulu to re- the Los Angeles Steamship Company, at newed efforts to place their attractions Fort and Oueen Sts., and here may be before the people of the mainland. arranged passage direct to Los Angeles, The Company is also inducing the and beyond by rail, or you may .arrange people of Hawaii to visit California and to ship your auto or general freight. become acquainted with the people of the' scenic beaches of that state. The Mat- The Oceanic Steamship Company, son Navigation Company maintains a with head offices in San Francisco, and tourist information bureau at its main Brewer & Company as agents in Honolulu, office in the Matson Building in San maintains a fleet of swift palatial steamers Francisco, as well as in the Castle & between San Francisco, Hawaii, and Aus- Cooke Building in Honolulu, where tralia, visiting Fiji and Samoa en route. tours of the Hawaiian Islands may be This is the ideal passage to the South Seas booked. via the sunshine belt to Australasia.
    [Show full text]
  • The Indian Ocean 106 Worldwide Review of Bottom Fisheries in the High Seas
    THE INDIAN OCEAN 106 Worldwide review of bottom fisheries in the high seas 30°E 40°E 50°E 60°E 70°E 80°E 90°E 100°E 110°E 120°E P h A a il i p A r a b i a n n f f e p 57.1 d h i 51.3 n S e a a S t e y o ngal m T G ha u u S °N a l e °N Ba Be f i a n n l a u a o o 10 f l 10 n n a S d S u e S e a i S 57.7 h C 51.5 0° 0° M i d - I n d i 51.a n R 4i d g e J a v a Banda 57.2 S 57.2 e a Sea Mascarene °S Plateau °S 10 Saya De T i m o r 10 e u Malha Bank q Malha Bank S e a i l MozambiqueMo Ridge b e m 57.5.1 zambique Ridge a n n z a n o h 51.6 a C 51.6 °S e °S M c 20 O 20 51.7 57.3 Ninetyeast Ridge Ninetyeast Ridge n °S Madagascar a °S 51.8 Broken Ridge 30 Ridge i 30 d 57.5.2 °S n °S 40 Southwest Indian Ridge 40 I Southeast57.4 Indian Ridge °S °S 50 50 30°E 40°E 50°E 60°E 70°E 80°E 90°E 100°E 110°E 120°E 200 nautical miles arcs Higigh-seas deep sea fishing grounds SIOFA Competence Area Map Projection: Cylindrical equal area FAO Fishing Areas FAO, 2008 MAP 1 Main high seas deep-sea fishing grounds in the Indian Ocean and area of competence of the Southern Indian Ocean Fisheries Agreement (SIOFA) 107 Indian Ocean FAO Statistical Areas 51 and 57 GEOGRAPHIC DESCRIPTION OF THE REGION The Indian Ocean is the third largest of the earth’s five oceans.
    [Show full text]
  • Wasted Resources: Bycatch and Discards in U. S. Fisheries
    Wasted Resources: Bycatch and discards in U. S. Fisheries by J. M. Harrington, MRAG Americas, Inc. R. A. Myers, Dalhousie University A. A. Rosenberg, University of New Hampshire Prepared by MRAG Americas, Inc. For Oceana July 2005 TABLE OF CONTENTS ACKNOWLEDGEMENTS 7 NATIONAL OVERVIEW 9 Introduction 9 Methodology 11 Discarded Bycatch Estimates for the 27 Major Fisheries in the U.S. 12 Recommendations 17 Definitions of Key Terms Used in the Report 19 Acronyms and Abbreviations Used in the Report 20 NORTHEAST 25 Northeast Groundfish Fishery 27 Target landings 28 Regulations 30 Discards 32 Squid, Mackerel and Butterfish Fishery 41 Target landings 42 Regulations 44 Discards 44 Monkfish Fishery 53 Target landings 53 Regulations 54 Discards 55 Summer Flounder, Scup, and Black Sea Bass Fishery 59 Target landings 59 Regulations 60 Discards 61 Spiny Dogfish Fishery 69 Target landings 69 Regulations 70 Discards 70 Atlantic Surf Clam and Ocean Quahog Fishery 75 Target landings 75 Regulations 76 Discards 76 Atlantic Sea Scallop Fishery 79 Target landings 79 Regulations 80 Discards 81 Atlantic Sea Herring Fishery 85 Target landings 85 Regulations 86 Discards 87 Northern Golden Tilefish Fishery 93 Target landings 93 Regulations 94 Discards 94 Atlantic Bluefish Fishery 97 Target landings 97 Regulations 98 Discards 98 Deep Sea Red Crab Fishery 101 Target landings 101 Regulations 101 Discards 102 SOUTHEAST 103 Shrimp Fishery of the South Atlantic 105 Target landings 105 Regulations 106 Discards 107 Snapper and Grouper of the South Atlantic 111 Target
    [Show full text]