Hawaiian and Greater Pacific Ocean Fisheries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SUSTAINABLE FISHERIES and RESPONSIBLE AQUACULTURE: a Guide for USAID Staff and Partners
SUSTAINABLE FISHERIES AND RESPONSIBLE AQUACULTURE: A Guide for USAID Staff and Partners June 2013 ABOUT THIS GUIDE GOAL This guide provides basic information on how to design programs to reform capture fisheries (also referred to as “wild” fisheries) and aquaculture sectors to ensure sound and effective development, environmental sustainability, economic profitability, and social responsibility. To achieve these objectives, this document focuses on ways to reduce the threats to biodiversity and ecosystem productivity through improved governance and more integrated planning and management practices. In the face of food insecurity, global climate change, and increasing population pressures, it is imperative that development programs help to maintain ecosystem resilience and the multiple goods and services that ecosystems provide. Conserving biodiversity and ecosystem functions are central to maintaining ecosystem integrity, health, and productivity. The intent of the guide is not to suggest that fisheries and aquaculture are interchangeable: these sectors are unique although linked. The world cannot afford to neglect global fisheries and expect aquaculture to fill that void. Global food security will not be achievable without reversing the decline of fisheries, restoring fisheries productivity, and moving towards more environmentally friendly and responsible aquaculture. There is a need for reform in both fisheries and aquaculture to reduce their environmental and social impacts. USAID’s experience has shown that well-designed programs can reform capture fisheries management, reducing threats to biodiversity while leading to increased productivity, incomes, and livelihoods. Agency programs have focused on an ecosystem-based approach to management in conjunction with improved governance, secure tenure and access to resources, and the application of modern management practices. -
A COMPARATIVE ACCOUNT of the SMALL PELAGIC FISHERIES in the APFIC REGION by M
A COMPARATIVE ACCOUNT OF THE SMALL PELAGIC FISHERIES IN THE APFIC REGION by M. Devaraj and E. Vivekanandan Central Marine Fisheries Research Institute Cocbin-682014, India Abstract The production of the small pe/agics in the APFIC region was 1.2 mt/sq. km during 1995. Among the four areas in the region, the small pe/agics have registered (i) the maximum annual fluctuations in the western Indian Ocean; (ii) the highest increase duri'}i the past two decades along the west coast of Thailand in the eastern Indian Ocean; and (iii) the consistent decline in the landings during the past one decade along the Japanese coast in the northwest Pacific Ocean. The short rnackerels emerged as the largest fishery in the APFlC region, fom'ing 19.5% of the landings of the small pelagics in 1995. The group consisting afthe sardines and the anchovies has shown clear signs of decline during the past one decade in almost the entire region. Most of the small pelagics have unique biological characteristics such as fast growth, short longevity, late maturity, high nalllral mortality, shoaling behaviour, high fecundity and severe recruitment fluctuations. As many species of the small pelagics undertake migration, collaborative research programmes and close coordination are required among the APFle countries for the stock assessment of all the major species. The management measures under implementation in these countries have been reviewed, with suggestions for regional cooperation for the management of the stocks of the small pelagics. INTRODUCTION The Asia-Pacific Fishery Commission covers four oceanic areas, which have been classified by the FAO as the western Indian Ocean (FAO Statistical Area 51), eastern Indian Ocean (Area 57) , northwest Pacific Ocean (Area 61) and western central Pacific Ocean (Area 71). -
Sustainable Seafood Campaign
Sustainable Seafood Campaign Overfishing and destructive fishing are among the most significant threats facing our oceans. The UN reports that three-quarters of global fish stocks are either fully exploited or overexploited. Scientists estimate that 90% of top marine predators such as tuna and sharks are already gone. Pirate fishing, estimated to account for up to a third of the global catch, is notorious for targeting at-risk populations and using highly destructive methods. Destructive fishing indiscriminately kills “non-target” species, including marine mammals and seabirds, and destroys habitats that marine species depend on for survival. In addition to the direct and cascading effects on marine ecosystems, overfishing and destructive fishing make our ocean ecosystems more vulnerable to global warming. If current trends continue, scientists predict global fisheries will collapse in forty years. U.S. consumers buy half their seafood at supermarkets, to the tune of $16 billion every year. As consumer interest in sustainable products has grown, so have retailer efforts to promote their eco-friendly initiatives. Yet, few supermarkets have made significant efforts to improve their seafood sustainability. Greenpeace is calling on supermarkets to sell only sustainable seafood and to support positive reforms in fisheries management. By doing so, supermarkets will do their part to help avert the crisis facing our oceans while ensuring their customers quality fish from sustainable fisheries for years to come. Supermarkets have enormous purchasing power, and are well positioned to influence the way the fishing industry operates. What You Can Do! Greenpeace needs your help monitoring supermarket seafood policies and practices. The information you gather will be used to update our supermarket scorecard. -
Why Study Bycatch? an Introduction to the Theme Section on Fisheries Bycatch
Vol. 5: 91–102, 2008 ENDANGERED SPECIES RESEARCH Printed December 2008 doi: 10.3354/esr00175 Endang Species Res Published online December xx, 2008 Contribution to the Theme Section ‘Fisheries bycatch problems and solutions’ OPENPEN ACCESSCCESS Why study bycatch? An introduction to the Theme Section on fisheries bycatch Candan U. Soykan1,*, Jeffrey E. Moore2, Ramunas ¯ 5ydelis2, Larry B. Crowder2, Carl Safina3, Rebecca L. Lewison1 1Biology Department, San Diego State University, 5500 Campanile Dr., San Diego, California 92182-4614, USA 2Center for Marine Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort,North Carolina 28516, USA 3Blue Ocean Institute, PO Box 250, East Norwich, New York 11732, USA ABSTRACT: Several high-profile examples of fisheries bycatch involving marine megafauna (e.g. dolphins in tuna purse-seines, albatrosses in pelagic longlines, sea turtles in shrimp trawls) have drawn attention to the unintentional capture of non-target species during fishing operations, and have resulted in a dramatic increase in bycatch research over the past 2 decades. Although a number of successful mitigation measures have been developed, the scope of the bycatch problem far exceeds our current capacity to deal with it. Specifically, we lack a comprehensive understanding of bycatch rates across species, fisheries, and ocean basins, and, with few exceptions, we lack data on demographic responses to bycatch or the in situ effectiveness of existing mitigation measures. As an introduction to this theme section of Endangered Species Research ‘Fisheries bycatch: problems and solutions’, we focus on 5 bycatch-related questions that require research attention, building on exam- ples from the current literature and the contributions to this Theme Section. -
Ecosystem-Based Fisheries Management Improving the Resilience of Ocean Ecosystems to Support Fish Populations, Coastal Communities
A brief from March 2014 Ecosystem-Based Fisheries Management Improving the resilience of ocean ecosystems to support fish populations, coastal communities The fish on the end of your line, the little forage fish that feed the big fish, the corals that build reef habitats, and the catch of the day in your favorite restaurant are interconnected parts of a vibrant ocean ecosystem. Ensuring the long-term health of important marine species will depend upon our ability to understand and account for the interactions among those species, their environment, and the people who rely upon them for food, commerce, and sport. This comprehensive approach, called ecosystem-based fisheries management, is needed to conserve the healthy ecosystems essential to the sustainability of our fisheries and to deal with the increasingly complex challenges facing our oceans. The United States is a global leader in fisheries management and has made great strides in ending overfishing (the problem of catching fish faster than they can reproduce) and rebuilding vulnerable populations under the Magnuson-Stevens Fishery Conservation and Management Act—the primary law governing U.S. ocean fisheries. In many regions of our nation, this progress has helped reestablish more abundant fish populations and created economic benefits for the fishing industry and coastal communities. Core conservation policies added to the law in 1996 and 2007 are fundamental to improving individual fish populations and returning value to fishermen. We must maintain them as the foundation for sustainable management. But the United States should make the transition from a species-by-species approach to ecosystem-based fisheries management to meet the rising and urgent challenges of damaged ocean environments and dynamic, changing oceans. -
Towards a Sustainable Fishery: the Price-Cap Approach
Towards a Sustainable Fishery: The Price-Cap Approach Eric M. Singer* Overfishing is the classic tragedy of the commons. So far, governments have pursued a variety of solutions to incentivize sustainable commercial fishing practices, realizing only mixed results. After describing the costs associated with implementing overfishing controls, I propose a new method of regulating commercial fishing: the price cap. This Article explains the theory of how price caps can incentivize sustainable fishing, analyzes the implementation costs associated with price caps, and compares price caps to existing overfishing regulations. Because each fishery is unique, no single method will produce the greatest benefit at the lowest cost in all fisheries. Accordingly, I analyze the factors that might make a fishery a better or worse candidate for the implementation of price caps. I. INTRODUCTION ................................................................................. 254 II. COSTS OF REGULATION .................................................................... 260 A. Transaction Costs ............................................................. 261 B. Enforcement Costs ............................................................ 263 C. Political Costs ................................................................... 265 D. International Cooperation ................................................. 266 E. Substitution Costs ............................................................. 267 F. Skill-Misallocation Costs ................................................ -
Models for an Ecosystem Approach to Fisheries
ISSN 0429-9345 FAO FISHERIES 477 TECHNICAL PAPER 477 Models for an ecosystem approach to fisheries Models for an ecosystem approach to fisheries This report reviews the methods available for assessing the impacts of interactions between species and fisheries and their implications for marine fisheries management. A brief description of the various modelling approaches currently in existence is provided, highlighting in particular features of these models that have general relevance to the field of ecosystem approach to fisheries (EAF). The report concentrates on the currently available models representative of general types such as bionergetic models, predator-prey models and minimally realistic models. Short descriptions are given of model parameters, assumptions and data requirements. Some of the advantages, disadvantages and limitations of each of the approaches in addressing questions pertaining to EAF are discussed. The report concludes with some recommendations for moving forward in the development of multispecies and ecosystem models and for the prudent use of the currently available models as tools for provision of scientific information on fisheries in an ecosystem context. FAO Cover: Illustration by Elda Longo FAO FISHERIES Models for an ecosystem TECHNICAL PAPER approach to fisheries 477 by Éva E. Plagányi University of Cape Town South Africa FOOD AND AGRICULTURE AND ORGANIZATION OF THE UNITED NATIONS Rome, 2007 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S
Journal of Geophysical Research: Oceans RESEARCH ARTICLE Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S. West Coast Key Points: Michael G. Jacox1,2 , Christopher A. Edwards3 , Elliott L. Hazen1 , and Steven J. Bograd1 • New upwelling indices are presented – for the U.S. West Coast (31 47°N) to 1NOAA Southwest Fisheries Science Center, Monterey, CA, USA, 2NOAA Earth System Research Laboratory, Boulder, CO, address shortcomings in historical 3 indices USA, University of California, Santa Cruz, CA, USA • The Coastal Upwelling Transport Index (CUTI) estimates vertical volume transport (i.e., Abstract Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are upwelling/downwelling) disproportionately productive relative to their surface area, particularly in the world’s major eastern • The Biologically Effective Upwelling ’ Transport Index (BEUTI) estimates boundary upwelling systems. Along oceanic eastern boundaries, equatorward wind stress and the Earth s vertical nitrate flux rotation combine to drive a near-surface layer of water offshore, a process called Ekman transport. Similarly, positive wind stress curl drives divergence in the surface Ekman layer and consequently upwelling from Supporting Information: below, a process known as Ekman suction. In both cases, displaced water is replaced by upwelling of relatively • Supporting Information S1 nutrient-rich water from below, which stimulates the growth of microscopic phytoplankton that form the base of the marine food web. Ekman theory is foundational and underlies the calculation of upwelling indices Correspondence to: such as the “Bakun Index” that are ubiquitous in eastern boundary upwelling system studies. While generally M. G. Jacox, fi [email protected] valuable rst-order descriptions, these indices and their underlying theory provide an incomplete picture of coastal upwelling. -
Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean Andrew Bakun, Claude Ray, and Salvador Lluch-Cota
CoaStalUpwellinO' and Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean Andrew Bakun, Claude Ray, and Salvador Lluch-Cota Abstract /1 Theseasonal intensity of wind-induced coastal upwelling in the western Indian Ocean is investigated. The upwelling off Northeast Somalia stands out as the dominant upwelling feature in the region, producing by far the strongest seasonal upwelling pulse that exists as a; regular feature in any ocean on our planet. It is surmised that the productive pelagic fish habitat off Southwest India may owe its particularly favorable attributes to coastal trapped wave propagation originating in a region of very strong wind-driven offshore trans port near the southern extremity of the Indian Subcontinent. Effects of relatively mild austral summer upwelling that occurs in certain coastal ecosystems of the southern hemi sphere may be suppressed by the effects of intense onshore transport impacting these areas during the opposite (SW Monsoon) period. An explanation for the extreme paucity of fish landings, as well as for the unusually high production of oceanic (tuna) fisheries relative to coastal fisheries, is sought in the extremely dissipative nature of the physical systems of the region. In this respect, it appears that the Gulf of Aden and some areas within the Mozambique Channel could act as important retention areas and sources of i "see6stock" for maintenance of the function and dillersitv of the lamer reoional biolooical , !I ecosystems. 103 104 large Marine EcosySlIlms ofthe Indian Ocean - . Introduction The western Indian Ocean is the site ofsome of the most dynamically varying-. large marine ecosystems (LMEs) that exist on our planet. -
Practical Principles for Sustainable Fisheries
Number 5 in the Series October 2010 For more information visit us at: www.marineconservationalliance.org PRACTICAL PRINCIPLES FOR SUSTAINABLE FISHERIES In today’s global marketplace sustainable fisheries are often identified through independent certification processes or reputable seafood guides. But at the coastal community level, where entire businesses and communities are dependent on the long-term health of their fisheries, it is measured in a more complex manner. To capture that complexity, the SeaAlliance has developed the following “Practical Principles for Sustainable Fisheries” based on our experience with fisheries in Alaska. In Alaska, the fishing industry and fisheries-dependent communities have a deep sense of responsibility for the oceans and a strong sense of their own historical connection to the sea. The best sustainable fishery programs have been primarily designed by these stakeholders, working collaboratively with fishery scientists and managers. There is a great diversity in the fisheries of Alaska, the nation, and the world. Regardless of the specific details for any particular fishery, there are basic characteristics to sustainable fisheries. The SeaAlliance relied on these common characteristics to develop the following principles: Alaska near-shore and off-shore commercial fisheries are recognized for their innovative approaches to science- based management and efforts to achieve long term sustainability. SeaAlliance Practical Principles for Sustainable Fisheries 1. Science-based management is the guide and 6. Sustainable fisheries are based on the economic, conservation comes first. Sustainable fisheries social and cultural needs of fishery participants, management sets conservative harvest limits, incorporates the affected coastal communities and other measures to reduce bycatch, and takes into account stakeholders. -
Review Article a Review of the Impacts of Fisheries on Open-Ocean
ICES Journal of Marine Science (2017), doi:10.1093/icesjms/fsx084 Review Article A review of the impacts of fisheries on open-ocean ecosystems Guillermo Ortuno~ Crespo* and Daniel C. Dunn Marine Geospatial Ecology Lab, Nicholas School of the Environment, Box 90328, Duke University, Levine Science Research Center, Durham, NC 27708, USA *Corresponding author: tel: þ1 (919) 638 4783; fax: þ1 252 504 7648; e-mail: [email protected]. Ortuno~ Crespo, G. and Dunn, D. C. A review of the impacts of fisheries on open-ocean ecosystems. – ICES Journal of Marine Science, doi:10.1093/icesjms/fsx084. Received 30 August 2016; revised 14 April 2017; accepted 1 May 2017. Open-ocean fisheries expanded rapidly from the 1960s through the 1980s, when global fish catches peaked, plateaued and possibly began to decline. While catches remain at best stagnant, fishing effort globally continues to increase (Anticamara, J. A., Watson, R., Gelchu, A., and Pauly, D. 2011. Fisheries Research, 107: 131–136; Merrie, A., Dunn, D. C., Metian, M., Boustany, A. M., Takei, Y., Elferink, A. O., Ota, Y., et al. 2014. Global Environmental Change 27: 19–31). The likelihood of ecosystem impacts occurring due to fishing is related to fishing effort and is thus also expected to be increasing. Despite this rapid growth, ecological research into the impacts of fisheries on open-ocean environments has lagged behind coastal and deep-sea environments. This review addresses this knowledge gap by considering the roles fisheries play in con- trolling the open-ocean at three ecological scales: (i) species (population or stock); (ii) biological community; and (iii) ecosystem. -
EOSC 112 Nov 26 Lecture by Prof Daniel Pauly – Fishing Down Marine Foodwebs
EOSC 112 Nov 26 Lecture by Prof Daniel Pauly – Fishing Down Marine Foodwebs Marine fish harvest is not increasing any more - main components of the harvest are: 1) bottom (demersal) fish such as cod, - 2) anchovie and sardines (small fish), and 3 ) by-catch (catch the wrong species) Early fisheries was centered on large species, but their numbers have decreased and so the fishing fleets are catching smaller and smaller species that are at lower trophic levels in the food web (hence the title of the lecture). Recall: 1) a food web is composed of various species that eat other species. Primary producers (phytoplankton) are at the first trophic level and animals that eat plants (herbivores) are at the second trophic level and animals that eat animals (carivores) are at the third trophic level. In some food webs, some animals are at the fourth or fifth trophic level. For example tuna is at the fifth trophic level. 2) The trophic level of an animal defines how far it is removed from the base of the food chain (the phytoplankton). 3) Ecological Efficiency or trophic level transfer – 10% of the biomass of the lower trophic level is transferred on to the next higher trophic level. So if you fish down one trophic level and catch smaller fish this is more efficient in terms of the food web since it did not take as much primary production to produce the fish at the lower trophic level. The mean trophic level of the global fisheries was near 4, but now it has decreased to about 3.2 (i.e.