11111111111Mi1im11m1mi11im
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Osmolyte Concentrations in Atriplex Halimus L
Anales de Biología 33: 117-126, 2011 ARTICLE Osmolyte concentrations in Atriplex halimus L. and Atriplex canescens (Pursh) Nutt. adapted to salinity and low temperature (Chenopodiaceae) Miloud Aouissat1, David J. Walker2, Kheiria Hcini3, Moulay Belkhodja4 & Enrique Correal2 1 Département de Biologie, Faculté des Sciences et des Technologies: Université Dr Tahar Moulay. SAIDA 20000, Algérie. 2 Departamento de Recursos Naturales: Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Estación Sericícola, Calle Mayor, s/n, La Alberca, 30150 Murcia, España. 3 Département des Sciences Biologiques, Faculté des Sciences de Tunis, Université de Tunis 2092 El Manar, Tunisie. 4 Département de Biologie, Laboratoire de Physiologie Végétale, Faculté des Sciences Université d’Oran sénia, Algérie. Resumen Correspondence Concentración de osmolitos en Atriplex halimus L. y Atriplex K. Hcini canescens (Pursh) Nutt. adaptados a salinidad y bajas temperaturas E-mail: [email protected] (Chenopodiaceae) Received: 24 May 2010 En este trabajo hemos investigado los efectos de la tolerancia a la Accepted: 19 September 2011 congelación de Atriplex halimus y Atriplex canescens de diferentes po- Published on-line: 12 December 2011 blaciones de Argelia. La tolerancia al frío se determinó mediante ensa- yos de pérdida de electrolitos en hojas de plantas que crecieron duran- te tres meses en maceta más un mes de aclimatación al frío. Para A. halimus se determinó el efecto que producía el incremento de salini- dad en el suelo sobre la tolerancia al frío, comparando los niveles de cationes y osmolitos orgánicos en hojas de plantas que crecieron en soluciones salinas, con los de plantas que únicamente habían sido aclimatadas al frío. -
Effect of Cement-Kiln Dust Pollution on the Vegetation in the Western Mediterranean Desert of Egypt
World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering Vol:5, No:9, 2011 Effect of Cement-kiln Dust Pollution on The Vegetation in The Western Mediterranean Desert of Egypt Amal, M. Fakhry, and M. M. Migahid Abstract—This study investigated the ecological effects of factories, especially down-wind areas, exhibit elevated pH particulate pollution from a cement factory on the vegetation in the levels which in turn affect vegetation growth, decreasing rates western Mediterranean coastal desert of Egypt. Variations in of photosynthesis, respiration, transpiration and growth rate vegetation, soil chemical characters, and some responses of Atriplex [6], [13], [14]. Dust accumulation from limestone cutting halimus, as a dominant species in the study area, were investigated in some sites located in different directions from the cement factory seriously affects the vegetation composition of some plant between Burg El-Arab in the east and El-Hammam in the west. The communities on Abu-Sir ridge in the western desert of Egypt results showed an obvious decrease in vegetation diversity, in [15].The present study aims at investigating the ecological response to cement-kiln dust pollution, that accompanied by a high effect of cement-kiln dust pollution produced by a cement dominance attributed to the high contribution of Atriplex halimus. factory on the diversity of the surrounding natural vegetation Annual species were found to be more sensitive to cement dust in the Egyptian western Mediterranean region (between Burg pollution as they all failed to persist in highly disturbed sites. It is remarkable that cover and phytomass of Atriplex halimus were El-Arab and El-Hammam), and assessing the responses of increased greatly in response to cement dust pollution, and this was Atriplex halimus, as a dominant species in the study area, to accompanied by a reduction in the mature seeds and leaf-area of the such air pollutant. -
Guidelines for Using the Checklist
Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. This grows naturally under favourable conditions, but there are should be considered preliminary information because much usually only a few isolated individuals. -
Salt Gland Excretion Efficiency and Salinity Tolerance of Sporobolus Species Piumi Shrimani Weragodavidana
United Arab Emirates University Scholarworks@UAEU Theses Electronic Theses and Dissertations 11-2016 Salt Gland Excretion Efficiency and Salinity Tolerance of Sporobolus Species Piumi Shrimani Weragodavidana Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses Part of the Environmental Sciences Commons Recommended Citation Weragodavidana, Piumi Shrimani, "Salt Gland Excretion Efficiency and Salinity Tolerance of Sporobolus Species" (2016). Theses. 469. https://scholarworks.uaeu.ac.ae/all_theses/469 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact [email protected]. lmEU United Arab Emirates University College of Science Departmentof Biology SALT GLAND EXCRETION EFFICIENCY AND SALINITY TOLERANCE OF SPOROBOLUS SPECIES Piumi Shrimani Baghya Weragodavidana This thesis is submitted in partial fulfilment of the requirements for the degree of Master of Science in Enviro1m1ental Sciences Under the Supervision of Dr. Synan AbuQamar November 2016 11 Declaration of Original Work I, Piumi Slu·imani Baghya Weragodavidana, the undersigned, a graduate student at the United Arab Emirates University (UAEU), and the author of this thesis entitled "Salt Gland Excretion Efficiency and Salinity Tolerance of Sporobolus Species", hereby, solemnly declare that this thesis is my own original research work that has been done and prepared by me under the supervision of Dr. Synan AbuQamar, in the College of Science at UAEU. This work has not previously been presented or published, or formed the basis for the award of any academic degree, diploma or a similar title at this or any other university. -
Albian Ammonites from Northern Pakistan
DE DE GRUYTER Acta Geologica Polonica, Vol. 64 (2014), No. 1, pp. 47–98 OPEN DOI: 10.2478/agp-2014-0003 G Albian ammonites from northern Pakistan WILLIAM JAMES KENNEDY1 AND ALI N. FATMI2 1Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom. E-mail: [email protected] 2Formerly of the Geological Survey of Pakistan, Quetta, Pakistan (Dr Fatmi died on 27 March 2012) ABSTRACT: Kennedy, W.J. and Fatmi, A.N. 2014. Albian ammonites from northern Pakistan. Acta Geologica Polonica, 64 (1), 47–98. Warszawa. The occurrence of rich Albian ammonite faunas in what is now northern Pakistan has been known for more than 80 years, but there has been no comprehensive account of the assemblages present. A total of 36 taxa are described below. The middle part of the Lumshiwal Formation yields Upper Aptian ammonites south of the Samana Range. Elsewhere, it yields Douvilleiceras leightonense Casey, 1962, of the lower Lower Albian Leymeriella reg- ularis Zone and the Sonneratia perinflata and S. kitchini Subzones of the Sonneratia chalensis Zone of the north- west European sequence. The top one to two metres of the Lumshiwal yields an abundant fauna of rolled and phos- phatised ammonites that includes elements from much of the Albian. Of these, Prolyelliceras gevreyi (Jacob, 1907) first appears in the lower Lower Albian Leymeriella tardefurcata Zone. The commonest ammonite is Douville- iceras mammillatum (Schlotheim, 1813) sensu lato, which ranges from the perinflata Subzone of the chalensis Zone to the Otohoplites bulliensis Subzone of the O. -
The Tolerance of Atriplex Halimus L. to Environmental Stresses
Emir. J. Food Agric. 2014. 26 (12): 1081-1090 doi: 10.9755/ejfa.v26i12.19116 http://www.ejfa.info/ REVIEW ARTICLE The tolerance of Atriplex halimus L. to environmental stresses David J. Walker1* and Stanley Lutts2 1Instituto Murciano de Investigación y Desarrollo Agricola y Alimentario, Calle Mayor s/n, La Alberca, 30150 Murcia, Spain 2Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy, ELIA – Université catholique de Louvain, Croix du sud 4-5 bte L7.07.13 à 1348 Louvain-la-Neuve, Belgium Abstract Atriplex halimus L. (Amaranthaceae) (Mediterranean Saltbush) is a perennial, halophytic shrub that possesses the C4 photosynthetic anatomy and physiology. It grows under semi-arid and arid conditions (annual rainfall < 600 mm) from Macaronesia, through the Mediterranean basin countries and into western Asia, being particularly common on saline and degraded soils. Many studies have shed light on the physiological and biochemical mechanisms that, together with the morphological and anatomical features of this species, contribute to its notable tolerance of important abiotic stresses: salinity, drought, extreme temperatures and soil contamination by trace elements. These will be discussed here, highlighting their shared and distinct features. Certain processes are common to two or more stress responses: for example, vacuolar accumulation of sodium and the cytoplasmic accumulation of compatible osmolytes - part of the process of osmotic adjustment - are vital components of the adaptation to drought, salinity and cold. Others, such as oxalate accumulation upon trace elements exposure, seem to be stress-specific, while leaf surface vesiculated hairs (trichomes) and abscisic acid have distinct functions according to the stress. -
WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia). -
Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia
plants Article Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia Olfa Karous 1,2,* , Imtinen Ben Haj Jilani 1,2 and Zeineb Ghrabi-Gammar 1,2 1 Institut National Agronomique de Tunisie (INAT), Département Agronoime et Biotechnologie Végétale, Université de Carthage, 43 Avenue Charles Nicolle, 1082 Cité Mahrajène, Tunisia; [email protected] (I.B.H.J.); [email protected] (Z.G.-G.) 2 Faculté des Lettres, Université de Manouba, des Arts et des Humanités de la Manouba, LR 18ES13 Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE), 2010 Manouba, Tunisia * Correspondence: [email protected] Abstract: Thanks to its geographic location between two bioclimatic belts (arid and Saharan) and the ancestral nomadic roots of its inhabitants, the sector of Ouled Dabbeb (Southern Tunisia) represents a rich source of plant biodiversity and wide ranging of ethnobotanical knowledge. This work aims to (1) explore and compile the unique diversity of floristic and ethnobotanical information on different folk use of plants in this sector and (2) provide a novel insight into the degree of knowledge transmission between the current population and their semi-nomadic forefathers. Ethnobotanical interviews and vegetation inventories were undertaken during 2014–2019. Thirty informants aged from 27 to 84 were interviewed. The ethnobotanical study revealed that the local community of Ouled Dabbeb perceived the use of 70 plant species belonging to 59 genera from 31 families for therapeutic (83%), food (49%), domestic (15%), ethnoveterinary (12%), cosmetic (5%), and ritual purposes (3%). Moreover, they were knowledgeable about the toxicity of eight taxa. Nearly 73% of reported ethnospecies were freely gathered from the wild. -
Grasses of Namibia Contact
Checklist of grasses in Namibia Esmerialda S. Klaassen & Patricia Craven For any enquiries about the grasses of Namibia contact: National Botanical Research Institute Private Bag 13184 Windhoek Namibia Tel. (264) 61 202 2023 Fax: (264) 61 258153 E-mail: [email protected] Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. -
Germination of Atriplex Halimuslinnaeus, 1753
Biodiversity Journal , 2015, 6 (2): 663-668 Germination of Atriplex halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in North West Algeria Kerzabi Rachida, Abdessamad Merzouk *, Stambouli-Meziane Hassiba & Benabadji Noury Laboratory of ecology and management of natural ecosystems, Department of Biology, Faculty of Sciences, Université Abou Bekr Belkaid Tlemcen, BP 119, 13000, Algeria *Corresponding author, e-mail: [email protected] ABSTRACT In arid and semi-arid ambients, soil salinity is a constraint for the development of plants and a threat for balanced diet. Current data in the Mediterranean basin report up to 16 million hectares of salt soil, 3.2 million of which in Algeria. Germination in vitro of seeds of Atriplex halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in both synthetic media (nutrient agar, and Mueller Hinton) reached rates of 80% at 25 °C and 50% at 5 °C. The taxon shows a good resistance to salt; because of high salinity treatments (500 to 600 meq/l), there is a delay in germination but not complete inhibition of the process. KEY WORDS Atriplex halimus ; germination, salinity; North West Algeria. Received 01.06.2015; accepted 24.06.2015; printed 30.06.2015 INTRODUCTION vior under various environments conditions . If some works have addressed the germination pro - From the physiological point of view, germina - cess of Atriplex halimus Linnaeus, 1753 (Caryo - tion is a process that translates the passage of the phyllales Chenopodiaceae) (Belkhodja & Bidai, slow life of a seed to active life in the optimum 2004), however little work has been done on the conditions for germination. Several Authors (Côme, rootlets in synthetic culture media. -
Ammonite Faunal Dynamics Across Bio−Events During the Mid− and Late Cretaceous Along the Russian Pacific Coast
Ammonite faunal dynamics across bio−events during the mid− and Late Cretaceous along the Russian Pacific coast ELENA A. JAGT−YAZYKOVA Jagt−Yazykova, E.A. 2012. Ammonite faunal dynamics across bio−events during the mid− and Late Cretaceous along the Russian Pacific coast. Acta Palaeontologica Polonica 57 (4): 737–748. The present paper focuses on the evolutionary dynamics of ammonites from sections along the Russian Pacific coast dur− ing the mid− and Late Cretaceous. Changes in ammonite diversity (i.e., disappearance [extinction or emigration], appear− ance [origination or immigration], and total number of species present) constitute the basis for the identification of the main bio−events. The regional diversity curve reflects all global mass extinctions, faunal turnovers, and radiations. In the case of the Pacific coastal regions, such bio−events (which are comparatively easily recognised and have been described in detail), rather than first or last appearance datums of index species, should be used for global correlation. This is because of the high degree of endemism and provinciality of Cretaceous macrofaunas from the Pacific region in general and of ammonites in particular. Key words: Ammonoidea, evolution, bio−events, Cretaceous, Far East Russia, Pacific. Elena A. Jagt−Yazykova [[email protected]], Zakład Paleobiologii, Katedra Biosystematyki, Uniwersytet Opolski, ul. Oleska 22, PL−45−052 Opole, Poland. Received 9 July 2011, accepted 6 March 2012, available online 8 March 2012. Copyright © 2012 E.A. Jagt−Yazykova. This is an open−access article distributed under the terms of the Creative Com− mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Urtica Dioica, an Emerauld in the Medical Kingdom
IBBJ Winter 2016, Vol 2, No 1 Review Article Urtica Dioica, An Emerauld in the Medical Kingdom Sadegh Fattahi1, 2, Monireh Golpour2, Haleh Akhavan-Niaki1, 3* 1. North Research Center-Pasteur Institute of Iran, Amol, Iran. 2. Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran. 3. Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran. Submitted 23 Jul 2016; Accepted 10 Aug 2016; Published 21 Sep 2016 Urtica dioica is a perennial plant used as herbal medicine due to its many pharmacological and clinical effects. Because of its antioxidant activity, it is widely used in traditional diabetes treatment but is also known as antimicrobial, anti inflammatory or anti prostate cancer agent. Extensive studies have been conducted on different parts of this plant and their biological effects. Here we reviewed the effect of different parts of this plant including leave, seed, root and aerial part extracted with various methods in treatment of diseases. Various beneficial effects were reported on animal models without apparent side effects, which led us to consider it as an emerald to be more deeply discovered in the kingdom of health. Keywords: Urtica dioica, diabetes, cancer, antioxidant, anti-inflammatory n traditional medicine, plants and herbs are polyphenols and cardiac glycosides are present in Downloaded from ibbj.org at 1:50 +0330 on Tuesday September 28th 2021 I widely used in treatment of the disease for their the leaves of Urtica dioica (2). The investigation of benefits such as having low side effects, being polyphenolic acids in male and female forms of natural sources with low cost.