Urtica Dioica, an Emerauld in the Medical Kingdom
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Guide for Fourwing Saltbush (Atriplex Canescens)
Plant Guide saline-sodic soils (Ogle and St. John, 2008). It has FOURWING SALTBUSH excellent drought tolerance and has been planted in highway medians and on road shoulders, slopes, and other Atriplex canescens (Pursh) Nutt. disturbed areas near roadways. Because it is a good Plant Symbol = ATCA2 wildlife browse species, caution is recommended in using fourwing saltbush in plantings along roadways. Its Contributed by: USDA NRCS Idaho Plant Materials extensive root system provides excellent erosion control. Program Reclamation: fourwing saltbush is used extensively for reclamation of disturbed sites (mine lands, drill pads, exploration holes, etc,). It provides excellent species diversity for mine land reclamation projects. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description Fourwing saltbush is a polymorphic species varying from deciduous to evergreen, depending on climate. Its much- branched stems are stout with whitish bark. Mature plants range from 0.3 to 2.4 m (1 to 8 ft) in height, depending on ecotype and the soil and climate. Its leaves are simple, alternate, entire, linear-spatulate to narrowly oblong, Fourwing saltbush. Photo by Steven Perkins @ USDA-NRCS canescent (covered with fine whitish hairs) and ½ to 2 PLANTS Database inches long. Its root system is branched and commonly very deep reaching depths of up to 6 m (20 ft) when soil Alternate Names depth allows (Kearney et al., 1960). Common Alternate Names: Fourwing saltbush is mostly dioecious, with male and Chamise, chamize, chamiso, white greasewood, saltsage, female flowers on separate plants (Welsh et al., 2003); fourwing shadscale, bushy atriplex however, some monoecious plants may be found within a population. -
Osmolyte Concentrations in Atriplex Halimus L
Anales de Biología 33: 117-126, 2011 ARTICLE Osmolyte concentrations in Atriplex halimus L. and Atriplex canescens (Pursh) Nutt. adapted to salinity and low temperature (Chenopodiaceae) Miloud Aouissat1, David J. Walker2, Kheiria Hcini3, Moulay Belkhodja4 & Enrique Correal2 1 Département de Biologie, Faculté des Sciences et des Technologies: Université Dr Tahar Moulay. SAIDA 20000, Algérie. 2 Departamento de Recursos Naturales: Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Estación Sericícola, Calle Mayor, s/n, La Alberca, 30150 Murcia, España. 3 Département des Sciences Biologiques, Faculté des Sciences de Tunis, Université de Tunis 2092 El Manar, Tunisie. 4 Département de Biologie, Laboratoire de Physiologie Végétale, Faculté des Sciences Université d’Oran sénia, Algérie. Resumen Correspondence Concentración de osmolitos en Atriplex halimus L. y Atriplex K. Hcini canescens (Pursh) Nutt. adaptados a salinidad y bajas temperaturas E-mail: [email protected] (Chenopodiaceae) Received: 24 May 2010 En este trabajo hemos investigado los efectos de la tolerancia a la Accepted: 19 September 2011 congelación de Atriplex halimus y Atriplex canescens de diferentes po- Published on-line: 12 December 2011 blaciones de Argelia. La tolerancia al frío se determinó mediante ensa- yos de pérdida de electrolitos en hojas de plantas que crecieron duran- te tres meses en maceta más un mes de aclimatación al frío. Para A. halimus se determinó el efecto que producía el incremento de salini- dad en el suelo sobre la tolerancia al frío, comparando los niveles de cationes y osmolitos orgánicos en hojas de plantas que crecieron en soluciones salinas, con los de plantas que únicamente habían sido aclimatadas al frío. -
Effect of Cement-Kiln Dust Pollution on the Vegetation in the Western Mediterranean Desert of Egypt
World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering Vol:5, No:9, 2011 Effect of Cement-kiln Dust Pollution on The Vegetation in The Western Mediterranean Desert of Egypt Amal, M. Fakhry, and M. M. Migahid Abstract—This study investigated the ecological effects of factories, especially down-wind areas, exhibit elevated pH particulate pollution from a cement factory on the vegetation in the levels which in turn affect vegetation growth, decreasing rates western Mediterranean coastal desert of Egypt. Variations in of photosynthesis, respiration, transpiration and growth rate vegetation, soil chemical characters, and some responses of Atriplex [6], [13], [14]. Dust accumulation from limestone cutting halimus, as a dominant species in the study area, were investigated in some sites located in different directions from the cement factory seriously affects the vegetation composition of some plant between Burg El-Arab in the east and El-Hammam in the west. The communities on Abu-Sir ridge in the western desert of Egypt results showed an obvious decrease in vegetation diversity, in [15].The present study aims at investigating the ecological response to cement-kiln dust pollution, that accompanied by a high effect of cement-kiln dust pollution produced by a cement dominance attributed to the high contribution of Atriplex halimus. factory on the diversity of the surrounding natural vegetation Annual species were found to be more sensitive to cement dust in the Egyptian western Mediterranean region (between Burg pollution as they all failed to persist in highly disturbed sites. It is remarkable that cover and phytomass of Atriplex halimus were El-Arab and El-Hammam), and assessing the responses of increased greatly in response to cement dust pollution, and this was Atriplex halimus, as a dominant species in the study area, to accompanied by a reduction in the mature seeds and leaf-area of the such air pollutant. -
Chisel-Toothed Kangaroo Rat (Dipodomys Microps Alfredi)
Version 2020-04-20 [A race of the] Chisel-toothed Kangaroo Rat (Dipodomys microps alfredi) Species Status Statement. Distribution This subspecies is endemic to Utah and occurs only on Gunnison Island in the Great Salt Lake. Durrant (1952, p. 274) considered this kangaroo rat to be the most distinctive of the mammal subspecies that are endemic to islands in the Great Salt Lake—so distinctive that he even considered the possibility that it may deserve full species status. Table 1. Utah counties currently occupied by this species. [a Race of the] Chisel-toothed Kangaroo Rat - alfredi BOX ELDER Abundance and Trends Oliver (field notes, 15 July 2014 and 22 October 2014) captured numerous individuals on the north and south sides of Gunnison Island. However, its population trends are unknown. Statement of Habitat Needs and Threats to the Species. Habitat Needs The chisel-toothed kangaroo rat (Dipodomys microps, full species) is a dietary and a habitat specialist, and typically lives in association with either saltbush (Atriplex sp.) or blackbrush (Coleogyne sp.). However in some places it is found in association with greasewood (Sarcobatus sp.), sagebrush (Artemisia sp.), and a few other desert shrubs. Native perennial grasses are thought to be well-tolerated by the species, but introduced annual grasses are considered to impact it negatively (see review of ecology in Hayssen 1991). Threats to the Species The State of Utah owns Gunnison Island, and the Utah Division of Wildlife Resources administers it as a bird nesting colony. Therefore many potential anthropogenic threats are already prevented. The principal threat to the existence of Dipodomys microps alfredi is the dewatering of the Great Salt Lake. -
(Amaranthaceae) in Italy. V. Atriplex Tornabenei
Phytotaxa 145 (1): 54–60 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.145.1.6 Studies on the genus Atriplex (Amaranthaceae) in Italy. V. Atriplex tornabenei DUILIO IAMONICO1 1 Laboratory of Phytogeography and Applied Geobotany, Department PDTA, Section Environment and Landscape, University of Rome Sapienza, 00196 Roma, Italy. Email: [email protected] Abstract The typification of the name Atriplex tornabenei (a nomen novum pro A. arenaria) is discussed. An illustration by Cupani is designated as the lectotype, while a specimen from FI is designated as the epitype. Chorological and morphological notes in comparison with the related species A. rosea and A. tatarica are also provided. A nomenclatural change (Atriplex tornabenei subsp. pedunculata stat. nov.) is proposed. Key words: Atriplex tornabenei var. pedunculata, epitype, infraspecific variability, lectotype, Mediterranean, nomenclatural change, nomen novum Introduction Atriplex Linnaeus (1753: 1054) is a genus of about 260 species distributed in arid and semiarid regions of Eurasia, America and Australia (Sukhorukov & Danin 2009). Several names (at species, subspecies, variety and form ranks) were described related to the high phenotipic variability of this critical genus (Al-Turki et al. 2000). As conseguence, misapplication of names and nomenclatural disorders exist and need clarification. In this paper, the identity of the A. tornabenei Tineo ex Gussone (1843: 589) is discussed as part of the treatment of the genus Atriplex for the new edition of the Italian Flora (editor, Prof. S. Pignatti) and within the initiative “Italian Loci Classici Census” (Domina et al. -
Species Assessment for White-Tailed Prairie Dog (Cynomys Leucurus)
SPECIES ASSESSMENT FOR WHITE -TAILED PRAIRIE DOG (CYNOMYS LEUCURUS ) IN WYOMING prepared by DOUGLAS A. KEINATH Zoology Program Manager, Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3013; [email protected] prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming December 2004 Keinath - Cynomys leucurus December 2004 Table of Contents INTRODUCTION ................................................................................................................................. 3 NATURAL HISTORY ........................................................................................................................... 4 Morphology............................................................................................................................. 4 Taxonomy and Distribution ..................................................................................................... 4 Taxonomy .......................................................................................................................................4 Range and Distribution....................................................................................................................5 Habitat Requirements............................................................................................................. 5 General ............................................................................................................................................5 -
The Tolerance of Atriplex Halimus L. to Environmental Stresses
Emir. J. Food Agric. 2014. 26 (12): 1081-1090 doi: 10.9755/ejfa.v26i12.19116 http://www.ejfa.info/ REVIEW ARTICLE The tolerance of Atriplex halimus L. to environmental stresses David J. Walker1* and Stanley Lutts2 1Instituto Murciano de Investigación y Desarrollo Agricola y Alimentario, Calle Mayor s/n, La Alberca, 30150 Murcia, Spain 2Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy, ELIA – Université catholique de Louvain, Croix du sud 4-5 bte L7.07.13 à 1348 Louvain-la-Neuve, Belgium Abstract Atriplex halimus L. (Amaranthaceae) (Mediterranean Saltbush) is a perennial, halophytic shrub that possesses the C4 photosynthetic anatomy and physiology. It grows under semi-arid and arid conditions (annual rainfall < 600 mm) from Macaronesia, through the Mediterranean basin countries and into western Asia, being particularly common on saline and degraded soils. Many studies have shed light on the physiological and biochemical mechanisms that, together with the morphological and anatomical features of this species, contribute to its notable tolerance of important abiotic stresses: salinity, drought, extreme temperatures and soil contamination by trace elements. These will be discussed here, highlighting their shared and distinct features. Certain processes are common to two or more stress responses: for example, vacuolar accumulation of sodium and the cytoplasmic accumulation of compatible osmolytes - part of the process of osmotic adjustment - are vital components of the adaptation to drought, salinity and cold. Others, such as oxalate accumulation upon trace elements exposure, seem to be stress-specific, while leaf surface vesiculated hairs (trichomes) and abscisic acid have distinct functions according to the stress. -
Common Nettle (Urtica Dioica L.) As an Active Filler of Natural Rubber Biocomposites
materials Article Common Nettle (Urtica dioica L.) as an Active Filler of Natural Rubber Biocomposites Marcin Masłowski * , Andrii Aleksieiev, Justyna Miedzianowska and Krzysztof Strzelec Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; [email protected] (A.A.); [email protected] (J.M.); [email protected] (K.S.) * Correspondence: [email protected] Abstract: Common nettle (Urtíca Dióica L.), as a natural fibrous filler, may be part of the global trend of producing biocomposites with the addition of substances of plant origin. The aim of the work was to investigate and explain the effectiveness of common nettle as a source of active functional compounds for the modification of elastomer composites based on natural rubber. The conducted studies constitute a scientific novelty in the field of polymer technology, as there is no research on the physico-chemical characteristics of nettle bio-components and vulcanizates filled with them. Separation and mechanical modification of seeds, leaves, branches and roots of dried nettle were carried out. Characterization of the ground plant particles was performed using goniometric measurements (contact angle), Fourier transmission infrared spectroscopy (FTIR), themogravimetric analysis (TGA) and scanning electron microscopy (SEM). The obtained natural rubber composites with different bio-filler content were also tested in terms of rheological, static and dynamic mechanical properties, cross-linking density, color change and resistance to simulated aging Citation: Masłowski, M.; Aleksieiev, processes. Composites with the addition of a filler obtained from nettle roots and stems showed the A.; Miedzianowska, J.; Strzelec, K. -
Atriplex Gardneri Gardner's Saltbush
Atriplex gardneri Gardner’s Saltbush by Kathy Lloyd Montana Native Plant Society Photo: Wayne Phillips Atriplex gardneri (Gardner’s Saltbush) ardner’s saltbush also goes by the com- (Atriplex gardneri). According to the label Freder- mon name of moundscale or Nuttall’s ick Pursh applied to the sheet, the plants on this saltbush. Plant taxonomists used to clas- specimen sheet were collected at the “Big Bend of sify this plant as Atriplex nuttallii, hence the Missouri Septbr 21, 1804,” placing the point of Gthe common name Nuttall’s saltbush, but the name collection in South Dakota. This sheet also contains was changed to Atriplex gardneri when some rear- a portion of an original label by Meriwether Lewis ranging of the genus brought an earlier scientific that says, “Sept. 21st.” The second specimen sheet name into the group. Unfortunately, scientific contains two mounted specimens of Gardner’s salt- names for plants do change from time to time, and it bush with a Pursh label reading, “A half Shrub from can be quite a chore to keep up with them. Lewis the high plains of Missouri Jul. 20th 1806,” placing and Clark probably didn’t spend too much time wor- this collection squarely in present-day Montana. rying about what to name the various plant species Lewis’s journal for July 20th describes the habitat they collected. They had their hands full with more that is characteristically associated with Gardner’s immediate concerns. saltbush, and with greasewood (Sarcobatus vermicu- Specimens of Gardner’s saltbush were collected latus), which was collected on the same day: “the more than once during the long cross-country trek, plains are more broken than they were yesterday and and several collections of the plant still exist today have become more inferior in point of soil; a great as part of the Lewis & Clark Herbarium at the Acad- quanty of small gravel is every where distributed emy of Natural Sciences in Philadelphia. -
WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia). -
Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia
plants Article Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia Olfa Karous 1,2,* , Imtinen Ben Haj Jilani 1,2 and Zeineb Ghrabi-Gammar 1,2 1 Institut National Agronomique de Tunisie (INAT), Département Agronoime et Biotechnologie Végétale, Université de Carthage, 43 Avenue Charles Nicolle, 1082 Cité Mahrajène, Tunisia; [email protected] (I.B.H.J.); [email protected] (Z.G.-G.) 2 Faculté des Lettres, Université de Manouba, des Arts et des Humanités de la Manouba, LR 18ES13 Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE), 2010 Manouba, Tunisia * Correspondence: [email protected] Abstract: Thanks to its geographic location between two bioclimatic belts (arid and Saharan) and the ancestral nomadic roots of its inhabitants, the sector of Ouled Dabbeb (Southern Tunisia) represents a rich source of plant biodiversity and wide ranging of ethnobotanical knowledge. This work aims to (1) explore and compile the unique diversity of floristic and ethnobotanical information on different folk use of plants in this sector and (2) provide a novel insight into the degree of knowledge transmission between the current population and their semi-nomadic forefathers. Ethnobotanical interviews and vegetation inventories were undertaken during 2014–2019. Thirty informants aged from 27 to 84 were interviewed. The ethnobotanical study revealed that the local community of Ouled Dabbeb perceived the use of 70 plant species belonging to 59 genera from 31 families for therapeutic (83%), food (49%), domestic (15%), ethnoveterinary (12%), cosmetic (5%), and ritual purposes (3%). Moreover, they were knowledgeable about the toxicity of eight taxa. Nearly 73% of reported ethnospecies were freely gathered from the wild. -
Germination of Atriplex Halimuslinnaeus, 1753
Biodiversity Journal , 2015, 6 (2): 663-668 Germination of Atriplex halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in North West Algeria Kerzabi Rachida, Abdessamad Merzouk *, Stambouli-Meziane Hassiba & Benabadji Noury Laboratory of ecology and management of natural ecosystems, Department of Biology, Faculty of Sciences, Université Abou Bekr Belkaid Tlemcen, BP 119, 13000, Algeria *Corresponding author, e-mail: [email protected] ABSTRACT In arid and semi-arid ambients, soil salinity is a constraint for the development of plants and a threat for balanced diet. Current data in the Mediterranean basin report up to 16 million hectares of salt soil, 3.2 million of which in Algeria. Germination in vitro of seeds of Atriplex halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in both synthetic media (nutrient agar, and Mueller Hinton) reached rates of 80% at 25 °C and 50% at 5 °C. The taxon shows a good resistance to salt; because of high salinity treatments (500 to 600 meq/l), there is a delay in germination but not complete inhibition of the process. KEY WORDS Atriplex halimus ; germination, salinity; North West Algeria. Received 01.06.2015; accepted 24.06.2015; printed 30.06.2015 INTRODUCTION vior under various environments conditions . If some works have addressed the germination pro - From the physiological point of view, germina - cess of Atriplex halimus Linnaeus, 1753 (Caryo - tion is a process that translates the passage of the phyllales Chenopodiaceae) (Belkhodja & Bidai, slow life of a seed to active life in the optimum 2004), however little work has been done on the conditions for germination. Several Authors (Côme, rootlets in synthetic culture media.