Spatial Distribution of Psammomys Obesus (Rodentia, Gerbillinae) in Relation to Vegetation in the Negev Desert of Israel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linking Behavior, Co-Infection Patterns, and Viral Infection Risk with the Whole Gastrointestinal Helminth Community Structure in Mastomys Natalensis
ORIGINAL RESEARCH published: 17 August 2021 doi: 10.3389/fvets.2021.669058 Linking Behavior, Co-infection Patterns, and Viral Infection Risk With the Whole Gastrointestinal Helminth Community Structure in Mastomys natalensis Bram Vanden Broecke 1*, Lisse Bernaerts 1, Alexis Ribas 2, Vincent Sluydts 1, Ladslaus Mnyone 3, Erik Matthysen 1 and Herwig Leirs 1 1 Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium, 2 Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, IRBio (Research Institute of Biodiversity), University of Barcelona, Barcelona, Spain, 3 Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania Edited by: Yadong Zheng, Infection probability, load, and community structure of helminths varies strongly between Lanzhou Institute of Veterinary and within animal populations. This can be ascribed to environmental stochasticity Research (CAAS), China or due to individual characteristics of the host such as their age or sex. Other, but Reviewed by: Mario Garrido, understudied, factors are the hosts’ behavior and co-infection patterns. In this study, we Ben-Gurion University of the used the multimammate mouse (Mastomys natalensis) as a model system to investigate Negev, Israel Si-Yang Huang, how the hosts’ sex, age, exploration behavior, and viral infection history affects their Yangzhou University, China infection risk, parasitic load, and community structure of gastrointestinal helminths. We Hannah Rose Vineer, hypothesized that the hosts’ exploration behavior would play a key role in the risk for University of Liverpool, United Kingdom infection by different gastrointestinal helminths, whereby highly explorative individuals *Correspondence: would have a higher infection risk leading to a wider diversity of helminths and a larger Bram Vanden Broecke load compared to less explorative individuals. -
Osmolyte Concentrations in Atriplex Halimus L
Anales de Biología 33: 117-126, 2011 ARTICLE Osmolyte concentrations in Atriplex halimus L. and Atriplex canescens (Pursh) Nutt. adapted to salinity and low temperature (Chenopodiaceae) Miloud Aouissat1, David J. Walker2, Kheiria Hcini3, Moulay Belkhodja4 & Enrique Correal2 1 Département de Biologie, Faculté des Sciences et des Technologies: Université Dr Tahar Moulay. SAIDA 20000, Algérie. 2 Departamento de Recursos Naturales: Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Estación Sericícola, Calle Mayor, s/n, La Alberca, 30150 Murcia, España. 3 Département des Sciences Biologiques, Faculté des Sciences de Tunis, Université de Tunis 2092 El Manar, Tunisie. 4 Département de Biologie, Laboratoire de Physiologie Végétale, Faculté des Sciences Université d’Oran sénia, Algérie. Resumen Correspondence Concentración de osmolitos en Atriplex halimus L. y Atriplex K. Hcini canescens (Pursh) Nutt. adaptados a salinidad y bajas temperaturas E-mail: [email protected] (Chenopodiaceae) Received: 24 May 2010 En este trabajo hemos investigado los efectos de la tolerancia a la Accepted: 19 September 2011 congelación de Atriplex halimus y Atriplex canescens de diferentes po- Published on-line: 12 December 2011 blaciones de Argelia. La tolerancia al frío se determinó mediante ensa- yos de pérdida de electrolitos en hojas de plantas que crecieron duran- te tres meses en maceta más un mes de aclimatación al frío. Para A. halimus se determinó el efecto que producía el incremento de salini- dad en el suelo sobre la tolerancia al frío, comparando los niveles de cationes y osmolitos orgánicos en hojas de plantas que crecieron en soluciones salinas, con los de plantas que únicamente habían sido aclimatadas al frío. -
Effect of Cement-Kiln Dust Pollution on the Vegetation in the Western Mediterranean Desert of Egypt
World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering Vol:5, No:9, 2011 Effect of Cement-kiln Dust Pollution on The Vegetation in The Western Mediterranean Desert of Egypt Amal, M. Fakhry, and M. M. Migahid Abstract—This study investigated the ecological effects of factories, especially down-wind areas, exhibit elevated pH particulate pollution from a cement factory on the vegetation in the levels which in turn affect vegetation growth, decreasing rates western Mediterranean coastal desert of Egypt. Variations in of photosynthesis, respiration, transpiration and growth rate vegetation, soil chemical characters, and some responses of Atriplex [6], [13], [14]. Dust accumulation from limestone cutting halimus, as a dominant species in the study area, were investigated in some sites located in different directions from the cement factory seriously affects the vegetation composition of some plant between Burg El-Arab in the east and El-Hammam in the west. The communities on Abu-Sir ridge in the western desert of Egypt results showed an obvious decrease in vegetation diversity, in [15].The present study aims at investigating the ecological response to cement-kiln dust pollution, that accompanied by a high effect of cement-kiln dust pollution produced by a cement dominance attributed to the high contribution of Atriplex halimus. factory on the diversity of the surrounding natural vegetation Annual species were found to be more sensitive to cement dust in the Egyptian western Mediterranean region (between Burg pollution as they all failed to persist in highly disturbed sites. It is remarkable that cover and phytomass of Atriplex halimus were El-Arab and El-Hammam), and assessing the responses of increased greatly in response to cement dust pollution, and this was Atriplex halimus, as a dominant species in the study area, to accompanied by a reduction in the mature seeds and leaf-area of the such air pollutant. -
Mammals of Jordan
© Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order. -
<I>Psammomys Obesus</I>
Journal of the American Association for Laboratory Animal Science Vol 51, No 6 Copyright 2012 November 2012 by the American Association for Laboratory Animal Science Pages 769–774 Sex-Associated Effects on Hematologic and Serum Chemistry Analytes in Sand Rats (Psammomys obesus) Julie D Kane,1,* Thomas J Steinbach,1 Rodney X Sturdivant,2 and Robert E Burks3 We sought to determine whether sex had a significant effect on the hematologic and serum chemistry analytes in adult sand rats (Psammomys obesus) maintained under normal laboratory conditions. According to the few data available for this species, we hypothesized that levels of hematologic and serum chemistry analytes would not differ significantly between clinically normal male and female sand rats. Data analysis revealed several significant differences in hematologic parameters between male and female sand rats but none for serum biochemistry analytes. The following hematologic parameters were greater in male than in female sand rats: RBC count, hemoglobin, hematocrit, red cell hemoglobin content, and percentage monocytes. Red cell distribution width, hemoglobin distribution width, mean platelet volume, and percentage lymphocytes were greater in female than in male sand rats. The sex of adult sand rats is a source of variation that must be considered in terms of clinical and research data. The data presented here likely will prove useful in the veterinary medical management of sand rat colonies and provide baseline hematologic and serum chemistry analyte information for researchers wishing to use this species. Psammomys obesus, commonly called the sand rat or fat sand Sand rats currently are not raised at any commercial rodent rat, is a diurnal desert animal belonging to the family Muridae breeding farms in the United States. -
Evolutionary Systematics in African Gerbilline Rodents of the Genus Gerbilliscus: Inference from Mitochondrial Genes
Molecular Phylogenetics and Evolution 42 (2007) 797–806 www.elsevier.com/locate/ympev Evolutionary systematics in African gerbilline rodents of the genus Gerbilliscus: Inference from mitochondrial genes Paolo Colangelo a,¤, Laurent Granjon b,c, Peter J. Taylor d, Marco Corti a a Dipartimento di Biologia Animale e dell’Uomo, Università di Roma “La Sapienza”, Via Borelli 50, 00161 Roma, Italy b Centre de Biologie et Gestion des Populations (UMR 022 IRD), Campus international Agropolis de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France c Muséum National d’Histoire Naturelle, Département Systématique et Evolution, FRE 2695: Origine, structure et évolution de la Biodiversité (Mammifères & Oiseaux), 55 rue BuVon, 75 005 Paris, France d eThekwini Natural Science Museum, P.O. Box 4085, Durban 4001, South Africa Received 23 January 2006; revised 13 July 2006; accepted 3 October 2006 Available online 11 October 2006 Abstract Gerbilliscus has recently been proposed as an endemic African rodent genus distinct from the Asian Tatera. A molecular phylogeny of the genus, including nine species from southern, western and eastern Africa, is presented here based on the analysis of the cytochrome b and 16S mitochondrial genes. With an adequate taxonomic sampling over a wide geographic range, we here provide a clear picture of the phylogenetic relationships between species and species groups in this genus. Three distinct clades were resolved, corresponding to major geographical subdivisions: an eastern clade that possibly diverged Wrst, then a southern and a western clades which appeared later. We suggest two possible hypotheses concerning the dispersal of the genus across Africa, considering also the patterns of karyotypic variation. -
Microscopic Anatomy of Ocular Globe in Diurnal Desert Rodent Psammomys Obesus (Cretzschmar, 1828) Ouanassa Saadi-Brenkia1,2* , Nadia Hanniche2 and Saida Lounis1,2
Saadi-Brenkia et al. The Journal of Basic and Applied Zoology (2018) 79:43 The Journal of Basic https://doi.org/10.1186/s41936-018-0056-0 and Applied Zoology RESEARCH Open Access Microscopic anatomy of ocular globe in diurnal desert rodent Psammomys obesus (Cretzschmar, 1828) Ouanassa Saadi-Brenkia1,2* , Nadia Hanniche2 and Saida Lounis1,2 Abstract Background: The visual system of desert rodents demonstrates a rather high degree of development and specific features associated with adaptation to arid environment. The aim of this study is to carry out a descriptive investigation into the most relevant features of the sand rat eye. Results: Light microscopic observations revealed that the eye of Psammomys obesus diurnal species, appears similar to that of others rodent with characteristic mammalian organization. The eye was formed by the three distinct layers typical in vertebrates: fibrous tunic (sclera and cornea); vascular tunic (Iris, Ciliary body, Choroid); nervous tunic (retina). Three chambers of fluid fundamentals in maintaining the eyeball’s normal size and shape: Anterior chamber (between cornea and iris), Posterior chamber (between iris, zonule fibers and lens) and the Vitreous chamber (between the lens and the retina) The first two chambers are filled with aqueous humor whereas the vitreous chamber is filled with a more viscous fluid, the vitreous humor. These fluids are made up of 99.9% water. However, the main features, related to life style and arid environment, are the egg-shaped lens, the heavy pigmentation of the middle layer and an extensive folding of ciliary processes, thus developing a large surface area, for ultrafiltration and active fluid transport, this being the actual site of aqueous production. -
The Tolerance of Atriplex Halimus L. to Environmental Stresses
Emir. J. Food Agric. 2014. 26 (12): 1081-1090 doi: 10.9755/ejfa.v26i12.19116 http://www.ejfa.info/ REVIEW ARTICLE The tolerance of Atriplex halimus L. to environmental stresses David J. Walker1* and Stanley Lutts2 1Instituto Murciano de Investigación y Desarrollo Agricola y Alimentario, Calle Mayor s/n, La Alberca, 30150 Murcia, Spain 2Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy, ELIA – Université catholique de Louvain, Croix du sud 4-5 bte L7.07.13 à 1348 Louvain-la-Neuve, Belgium Abstract Atriplex halimus L. (Amaranthaceae) (Mediterranean Saltbush) is a perennial, halophytic shrub that possesses the C4 photosynthetic anatomy and physiology. It grows under semi-arid and arid conditions (annual rainfall < 600 mm) from Macaronesia, through the Mediterranean basin countries and into western Asia, being particularly common on saline and degraded soils. Many studies have shed light on the physiological and biochemical mechanisms that, together with the morphological and anatomical features of this species, contribute to its notable tolerance of important abiotic stresses: salinity, drought, extreme temperatures and soil contamination by trace elements. These will be discussed here, highlighting their shared and distinct features. Certain processes are common to two or more stress responses: for example, vacuolar accumulation of sodium and the cytoplasmic accumulation of compatible osmolytes - part of the process of osmotic adjustment - are vital components of the adaptation to drought, salinity and cold. Others, such as oxalate accumulation upon trace elements exposure, seem to be stress-specific, while leaf surface vesiculated hairs (trichomes) and abscisic acid have distinct functions according to the stress. -
Psammomys Obesus) Environmental Enrichment Is Not Inhibiting Their Diabetes Development and Use As an Animal Model for Human Diet Induced Type 2 Diabetes
Providing Sand Rats (Psammomys Obesus) Environmental Enrichment is not Inhibiting their Diabetes Development and Use as an Animal Model for Human Diet Induced Type 2 Diabetes Friis Mikkelsen, Lars; Boserup, Tine ; Kiersgaard, Maria Kristina; Bödvarsdottir, Thóra Brynja ; Sørensen, Dorte Bratbo Published in: Integrative Journal of Veterinary Biosciences DOI: 10.31038/IJVB.1000113 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Friis Mikkelsen, L., Boserup, T., Kiersgaard, M. K., Bödvarsdottir, T. B., & Sørensen, D. B. (2018). Providing Sand Rats (Psammomys Obesus) Environmental Enrichment is not Inhibiting their Diabetes Development and Use as an Animal Model for Human Diet Induced Type 2 Diabetes. Integrative Journal of Veterinary Biosciences, 1-4. https://doi.org/10.31038/IJVB.1000113 Download date: 29. Sep. 2021 Integrative Journal of Veterinary Biosciences Research Open Volume 2 Issue 3 Research Article Providing Sand Rats (Psammomys Obesus) Environmental Enrichment is not Inhibiting their Diabetes Development and Use as an Animal Model for Human Diet Induced Type 2 Diabetes Lars Friis Mikkelsen*1, Tine Boserup2, Maria Kristina Kiersgaard2,3, Thóra Brynja Bödvarsdottir3 and Dorte Bratbo Sørensen2,4 1*LarSolution, Frederiksberg, Denmark 2Centre for Applied Laboratory Animal Research (CALAR), Denmark 3Novo Nordisk A/S, Maaloev, Denmark 4University of Copenhagen, Frederiksberg, Denmark *Correspondence to: Lars Friis Mikkelsen, LarSolution, Frederiksberg, Denmark; E-mail: [email protected] Received: May 29, 2018; Accepted: June 12, 2018; Published: June 16, 2018; Abstract The gerbil, Psammomys obesus, commonly known as the fat sand rat, is a well-defined animal model for human type 2 diabetes (T2D). -
WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia). -
Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia
plants Article Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia Olfa Karous 1,2,* , Imtinen Ben Haj Jilani 1,2 and Zeineb Ghrabi-Gammar 1,2 1 Institut National Agronomique de Tunisie (INAT), Département Agronoime et Biotechnologie Végétale, Université de Carthage, 43 Avenue Charles Nicolle, 1082 Cité Mahrajène, Tunisia; [email protected] (I.B.H.J.); [email protected] (Z.G.-G.) 2 Faculté des Lettres, Université de Manouba, des Arts et des Humanités de la Manouba, LR 18ES13 Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE), 2010 Manouba, Tunisia * Correspondence: [email protected] Abstract: Thanks to its geographic location between two bioclimatic belts (arid and Saharan) and the ancestral nomadic roots of its inhabitants, the sector of Ouled Dabbeb (Southern Tunisia) represents a rich source of plant biodiversity and wide ranging of ethnobotanical knowledge. This work aims to (1) explore and compile the unique diversity of floristic and ethnobotanical information on different folk use of plants in this sector and (2) provide a novel insight into the degree of knowledge transmission between the current population and their semi-nomadic forefathers. Ethnobotanical interviews and vegetation inventories were undertaken during 2014–2019. Thirty informants aged from 27 to 84 were interviewed. The ethnobotanical study revealed that the local community of Ouled Dabbeb perceived the use of 70 plant species belonging to 59 genera from 31 families for therapeutic (83%), food (49%), domestic (15%), ethnoveterinary (12%), cosmetic (5%), and ritual purposes (3%). Moreover, they were knowledgeable about the toxicity of eight taxa. Nearly 73% of reported ethnospecies were freely gathered from the wild. -
Germination of Atriplex Halimuslinnaeus, 1753
Biodiversity Journal , 2015, 6 (2): 663-668 Germination of Atriplex halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in North West Algeria Kerzabi Rachida, Abdessamad Merzouk *, Stambouli-Meziane Hassiba & Benabadji Noury Laboratory of ecology and management of natural ecosystems, Department of Biology, Faculty of Sciences, Université Abou Bekr Belkaid Tlemcen, BP 119, 13000, Algeria *Corresponding author, e-mail: [email protected] ABSTRACT In arid and semi-arid ambients, soil salinity is a constraint for the development of plants and a threat for balanced diet. Current data in the Mediterranean basin report up to 16 million hectares of salt soil, 3.2 million of which in Algeria. Germination in vitro of seeds of Atriplex halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in both synthetic media (nutrient agar, and Mueller Hinton) reached rates of 80% at 25 °C and 50% at 5 °C. The taxon shows a good resistance to salt; because of high salinity treatments (500 to 600 meq/l), there is a delay in germination but not complete inhibition of the process. KEY WORDS Atriplex halimus ; germination, salinity; North West Algeria. Received 01.06.2015; accepted 24.06.2015; printed 30.06.2015 INTRODUCTION vior under various environments conditions . If some works have addressed the germination pro - From the physiological point of view, germina - cess of Atriplex halimus Linnaeus, 1753 (Caryo - tion is a process that translates the passage of the phyllales Chenopodiaceae) (Belkhodja & Bidai, slow life of a seed to active life in the optimum 2004), however little work has been done on the conditions for germination. Several Authors (Côme, rootlets in synthetic culture media.