Dynamical Systems, Emergence and Explanation
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
What Is a Complex Adaptive System?
PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006). -
CHAOS and DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET
MATH-UA 264.001 – CHAOS AND DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET Objectives Dynamical systems theory is the branch of mathematics that studies the properties of iterated action of maps on spaces. It provides a mathematical framework to characterize a great variety of time-evolving phenomena in areas such as physics, ecology, and finance, among many other disciplines. In this class we will study dynamical systems that evolve in discrete time, as well as continuous-time dynamical systems described by ordinary di↵erential equations. Of particular focus will be to explore and understand the qualitative properties of dynamics, such as the existence of attractors, periodic orbits and chaos. We will do this by means of mathematical analysis, as well as simple numerical experiments. List of topics • One- and two-dimensional maps. • Linearization, stable and unstable manifolds. • Attractors, chaotic behavior of maps. • Linear and nonlinear continuous-time systems. • Limit sets, periodic orbits. • Chaos in di↵erential equations, Lyapunov exponents. • Bifurcations. Contact and office hours • Instructor: Dimitris Giannakis, [email protected]. Office hours: Monday 5:00-6:00PM and Wednesday 4:30–5:30PM ET. • Recitation Leader: Wenjing Dong, [email protected]. Office hours: Tuesday 4:00-5:00PM ET. Textbooks • Required: – Alligood, Sauer, Yorke, Chaos: An Introduction to Dynamical Systems, Springer. Available online at https://link.springer.com/book/10.1007%2Fb97589. • Recommended: – Strogatz, Nonlinear Dynamics and Chaos. – Hirsch, Smale, Devaney, Di↵erential Equations, Dynamical Systems, and an Introduction to Chaos. Available online at https://www.sciencedirect.com/science/book/9780123820105. -
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods Yi Ding Panos Toulis University of Chicago University of Chicago Department of Computer Science Booth School of Business Abstract In this paper, we adopt results in nonlinear time series analysis for causal inference in dynamical settings. Our motivation is policy analysis with panel data, particularly through the use of “synthetic control” methods. These methods regress pre-intervention outcomes of the treated unit to outcomes from a pool of control units, and then use the fitted regres- sion model to estimate causal effects post- intervention. In this setting, we propose to screen out control units that have a weak dy- Figure 1: A Lorenz attractor plotted in 3D. namical relationship to the treated unit. In simulations, we show that this method can mitigate bias from “cherry-picking” of control However, in many real-world settings, different vari- units, which is usually an important concern. ables exhibit dynamic interdependence, sometimes We illustrate on real-world applications, in- showing positive correlation and sometimes negative. cluding the tobacco legislation example of Such ephemeral correlations can be illustrated with Abadie et al.(2010), and Brexit. a popular dynamical system shown in Figure1, the Lorenz system (Lorenz, 1963). The trajectory resem- bles a butterfly shape indicating varying correlations 1 Introduction at different times: in one wing of the shape, variables X and Y appear to be positively correlated, and in the In causal inference, we compare outcomes of units who other they are negatively correlated. Such dynamics received the treatment with outcomes from units who present new methodological challenges for causal in- did not. -
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity). -
Organization, Self-Organization, Autonomy and Emergence: Status and Challenges
Organization, Self-Organization, Autonomy and Emergence: Status and Challenges Sven Brueckner 1 Hans Czap 2 1 New Vectors LLC 3520 Green Court, Suite 250, Ann Arbor, MI 48105-1579, USA Email: [email protected] http://www.altarum.net/~sbrueckner 2 University of Trier, FB IV Business Information Systems I D-54286 Trier, Germany Email: [email protected] http://www.wi.uni-trier.de/ Abstract: Development of IT-systems in application react and adapt autonomously to changing requirements. domains is facing an ever-growing complexity resulting from Therefore, approaches that rely on the fundamental principles a continuous increase in dynamics of processes, applications- of self-organization and autonomy are growing in acceptance. and run-time environments and scaling. The impact of this Following such approaches, software system functionality trend is amplified by the lack of central control structures. As is no longer explicitly designed into its component processes a consequence, controlling this complexity and dynamics is but emerges from lower-level interactions that are one of the most challenging requirements of today’s system purposefully unaware of the system-wide behavior. engineers. Furthermore, organization, the meaningful progression of The lack of a central control instance immediately raises local sensing, processing and action, is achieved by the the need for software systems which can react autonomously system components themselves at runtime and in response to to changing environmental requirements and conditions. the current state of the environment and the problem that is to Therefore, a new paradigm is necessary how to build be solved, rather than being enforced from the “outside” software systems changing radically the way one is used to through design or external control. -
Arxiv:0705.1142V1 [Math.DS] 8 May 2007 Cases New) and Are Ripe for Further Study
A PRIMER ON SUBSTITUTION TILINGS OF THE EUCLIDEAN PLANE NATALIE PRIEBE FRANK Abstract. This paper is intended to provide an introduction to the theory of substitution tilings. For our purposes, tiling substitution rules are divided into two broad classes: geometric and combi- natorial. Geometric substitution tilings include self-similar tilings such as the well-known Penrose tilings; for this class there is a substantial body of research in the literature. Combinatorial sub- stitutions are just beginning to be examined, and some of what we present here is new. We give numerous examples, mention selected major results, discuss connections between the two classes of substitutions, include current research perspectives and questions, and provide an extensive bib- liography. Although the author attempts to fairly represent the as a whole, the paper is not an exhaustive survey, and she apologizes for any important omissions. 1. Introduction d A tiling substitution rule is a rule that can be used to construct infinite tilings of R using a finite number of tile types. The rule tells us how to \substitute" each tile type by a finite configuration of tiles in a way that can be repeated, growing ever larger pieces of tiling at each stage. In the d limit, an infinite tiling of R is obtained. In this paper we take the perspective that there are two major classes of tiling substitution rules: those based on a linear expansion map and those relying instead upon a sort of \concatenation" of tiles. The first class, which we call geometric tiling substitutions, includes self-similar tilings, of which there are several well-known examples including the Penrose tilings. -
1 Emergence of Universal Grammar in Foreign Word Adaptations* Shigeko
1 Emergence of Universal Grammar in foreign word adaptations* Shigeko Shinohara, UPRESA 7018 University of Paris III/CNRS 1. Introduction There has been a renewal of interest in the study of loanword phonology since the recent development of constraint-based theories. Such theories readily express target structures and modifications that foreign inputs are subject to (e.g. Paradis and Lebel 1994, Itô and Mester 1995a,b). Depending on how the foreign sounds are modified, we may be able to make inferences about aspects of the speaker's grammar for which the study of the native vocabulary is either inconclusive or uninformative. At the very least we expect foreign words to be modified in accordance with productive phonological processes and constraints (Silverman 1992, Paradis and Lebel 1994). It therefore comes as some surprise when patterns of systematic modification arise for which the rules and constraints of the native system have nothing to say or even worse contradict. I report a number of such “emergent” patterns that appear in our study of the adaptations of French words by speakers of Japanese (Shinohara 1997a,b, 2000). I claim that they pose a learnability problem. My working hypothesis is that these emergent patterns are reflections of Universal Grammar (UG). This is suggested by the fact that the emergent patterns typically correspond to well-established crosslinguistic markedness preferences that are overtly and robustly attested in the synchronic phonologies of numerous other languages. It is therefore natural to suppose that these emergent patterns follow from the default parameter settings or constraint rankings inherited from the initial stages of language acquisition that remain latent in the mature grammar. -
Clunio Populations to Different Tidal Conditions
Genetic adaptation in emergence time of Clunio populations to different tidal conditions DIETRICH NEUMANN Zoologisches Institut der Universitiit Wiirzburg, Wiirzburg KURZFASSUNG: Genetische Adaptation der Schliipfzeiten yon Clunio-Populationen an verschiedene Gezeitenbedingungen. Die Schliipfzeiten der in der Gezeitenzone Iebenden Clunio-Arten (Diptera, Chironomidae) sind mit bestimmten Wasserstandsbedingungen syn- chronisiert, und zwar derart, dat~ die nnmittelbar anschlief~ende Fortpflanzung der kurz- lebigen Imagines auf dem trockengefallenen Habitat stattfinden kann. Wenn das Habitat einer Clunio-Art in der mittleren Gezeitenzone liegt und parallel zu dem halbt~igigen Gezeiten- zyklus (T = 12,4 h) zweimal t~iglich auftaucht, dann kann sich eine 12,4stiindige Schliipf- periodik einstellen (Beispiel: Clunio takahashii). Wenn das Habitat in der unteren Gezeiten- zone liegt und nur um die Zeit der Springtiden auftaucht, dann ist eine 15t~igige (semilunare) SchRipfperiodik zu erwarten (Beispiele: Clunio marinus und C. mecliterraneus). Diese 15t~igige Schliipfperiodik ist synchronisiert mit bestimmten Niedrigwasserbedingungen, die an einem Kiistenort alle 15 Tage jewqils um die gleiche Tageszeit auftreten. Sie wird daher dutch zwei Daten eindeutig gekennzeichnet: (1) die lunaren Schliipftage (wenige aufeinanderfolgende Tage um Voll- und Neumond) und (2) die t~igliche Schliipfzeit. Wie experimentelle Untersuchungen iiber die Steuerung der Schliipfperiodik zeigten, kiSnnen die Tiere beide Daten richtig voraus- bestimmen. Die einzelnen Kiistenpopulationen -
Control Theory
Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data. -
Handbook of Dynamical Systems
Handbook Of Dynamical Systems Parochial Chrisy dunes: he waggles his medicine testily and punctiliously. Draggled Bealle engirds her impuissance so ding-dongdistractively Allyn that phagocytoseOzzie Russianizing purringly very and inconsumably. perhaps. Ulick usually kotows lineally or fossilise idiopathically when Modern analytical methods in handbook of skeleton signals that Ale Jan Homburg Google Scholar. Your wishlist items are not longer accessible through the associated public hyperlink. Bandelow, L Recke and B Sandstede. Dynamical Systems and mob Handbook Archive. Are neurodynamic organizations a fundamental property of teamwork? The i card you entered has early been redeemed. Katok A, Bernoulli diffeomorphisms on surfaces, Ann. Routledge, Taylor and Francis Group. NOTE: Funds will be deducted from your Flipkart Gift Card when your place manner order. Attendance at all activities marked with this symbol will be monitored. As well as dynamical system, we must only when interventions happen in. This second half a Volume 1 of practice Handbook follows Volume 1A which was published in 2002 The contents of stain two tightly integrated parts taken together. This promotion has been applied to your account. Constructing dynamical systems having homoclinic bifurcation points of codimension two. You has not logged in origin have two options hinari requires you to log in before first you mean access to articles from allowance of Dynamical Systems. Learn more about Amazon Prime. Dynamical system in nLab. Dynamical Systems Mathematical Sciences. In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. Since it contains items is not enter your country yet. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
Emergence in Psychology: Lessons from the History of Non-Reductionist Science
Paper Human Development 2002;45:2-28 Human Development Emergence in Psychology: Lessons from the History of Non-Reductionist Science R. Keith Sawyer Washington University, St.louis, Mo., USA KeyWords Cognitive science. Emergence. History. Reductionism. Socioculturalism Abstract Theories of emergence have had a longstanding influence on psychological thought. Emergentism rejects both reductionism and holism; emergentists are scientific materialists, and yet argue that reductionist explanation may not always be scientifically feasible. I begin by summarizing the history of emergence in psy- chology and sociology, from the mid-19th century through the mid-20th century. I then demonstrate several parallels between this history and contemporary psy- chology, focusing on two recent psychological movements: socioculturalism and connectionist cognitive science. Placed in historical context, both sociocultural ism and connectionism are seen to be revivals of 19th and early 20th century emergen- tism. I then draw on this history to identify several unresolved issues facing socio- culturalists and connectionists, and to suggest several promising paths for future theory. Copyright @ 2002 S. Karger AG, Base! 1. Introduction Emergentism is a form of materialism which holds that some complex natural phe- nomena cannot be studied using reductionist methods. My first goal in this paper is to identify the historical roots of two emergentist paradigms in contemporary psychology: sociocultural psychology and cognitive science. My second goal is to draw on this histo- ry to explore several unresolved issues facing these contemporary paradigms. Sociocul- tural psychologists are sociological emergentists; they hold that group behavior is consti- KARG E R <92002 S. Karger AG, Basel R. Keith Sawyer, Washington University .OOI8-716X/02/0451-0()()2$18.50/0 Department of Education, Campus Box 1183 Fax+41613061234 St.