Bop8e Chapter03 REVISED W16 Part 1

Total Page:16

File Type:pdf, Size:1020Kb

Bop8e Chapter03 REVISED W16 Part 1 Ray F. Evert • Susan E. Eichhorn Raven Biology of Plants Eighth Edition CHAPTER 3 The Plant Cell and the Cell Cycle © 2013 W. H. Freeman and Company Powerhouse of the Plant Cell • The chloroplast is the site where light energy is used to produce the organic molecules required by the plant cell • In this image, the flattened and stacked membranes of the grana can be seen inside the chloroplast • Chlorophyll and other pigments embedded in the chloroplast membranes capture the sun's energy, the first step in the process essential to life—photosynthesis Hooke's Microscope • The English microscopist Robert Hooke first used the term "cell" to refer to the small chambers he saw in magnified slices of cork • (a) One of Hooke's microscopes, made for him around 1670 • Light from an oil lamp (far left) was directed to the specimen through a water-filled glass globe that acted as a condenser • The specimen was mounted on a pin, just below the tip of the microscope • The microscope was focused by moving it up and down using a screw held to the stand by a clamp • (b) This drawing of two slices of cork appeared in Hooke's book, Micrographia, published in 1665 Chapter Overview • Prokaryotes and Eukaryotes • The Plant Cell: An Overview • Nucleus • Chloroplasts and Other Plastids • Mitochondria • Peroxisomes • Vacuoles • Endoplasmic Reticulum • Golgi Apparatus • Cytoskeleton • Flagella and Cilia • Cell Wall • The Cell Cycle • Interphase • Mitosis and Cytokinesis Main Points of this Chapter • The cell is the fundamental unit of life • Cells are of two fundamentally different types: prokaryotic and eukaryotic • Plant cells typically consist of a cell wall and a protoplast • The nucleus is surrounded by a nuclear envelope and contains nucleoplasm, chromatin, and one or more nucleoli • Ribosomes are the sites of protein synthesis • There are three main types of plastids: chloroplasts, chromoplasts, and leucoplasts • Mitochondria are the sites of respiration • Plastids and mitochondria share certain features with prokaryotic cells • Peroxisomes are surrounded by a single membrane Main Points of this Chapter, continued • Vacuoles perform a variety of functions • The endoplasmic reticulum is an extensive three-dimensional system of membranes with a variety of roles • The Golgi apparatus is a highly polarized membrane system involved in secretion • The cytoskeleton is composed of microtubules and actin filaments • The cell wall is the major distinguishing feature of the plant cell • Dividing eukaryotic cells pass through a regular sequence of events known as the cell cycle • During prophase, the duplicated chromosomes shorten and thicken • Metaphase, anaphase, and telophase followed by cytokinesis result in two daughter cells Prokaryotes and Eukaryotes Prokaryote (Escherichia coli) Prokaryote • Electron micrograph of cells of Escherichia coli, a bacterium that is a common, usually harmless inhabitant of the human digestive tract • However, some E. coli strains, which generally are acquired by ingestion of contaminated food or water, produce toxins that cause massive secretion of fluids into the intestine, resulting in vomiting and diarrhea • This heterotrophic (nonphotosynthetic) prokaryote is the most thoroughly studied of all living organisms Prokaryote, continued • Each rod-shaped cell has a cell wall, a plasma membrane, and cytoplasm • The genetic material (DNA) is found in the less granular area in the center of each cell • This region, known as the nucleoid, is not surrounded by a membrane • (In prokaryotes, nucleoid contains most or all of the cell's genetic material) • The densely granular appearance of the cytoplasm is largely due to the presence of numerous ribosomes, which are involved with protein synthesis • The two cells in the center have just divided but have not yet separated completely Photosynthetic Eukaryote Plasma Membrane Photosynthetic Eukaryote • Electron micrograph of a cell from the leaf of a maize (Zea mays) plant • The granular material within the nucleus is chromatin • It contains DNA associated with histone proteins • The nucleolus is the region within the nucleus where the RNA components of ribosomes are synthesized • Note the many mitochondria and chloroplasts, all bounded by membranes • (Mitochondria – sites of respiration involving conversion of energy-rich molecules to do cellular work and release of waste products; chloroplasts – sites of photosynthesis) • The vacuole, which is a fluid-filled region enclosed by a membrane, and the cell wall are characteristic of plant cells Plasma Membrane (Eukaryote) • Under high magnification, cellular membranes often have a three-layered (dark-light-dark) appearance, as seen here (following slide) • This is a plasma membrane on either side of the common cell wall between two cells from an onion (Allium cepa) root tip • The numerous circular structures bordering the wall are microtubules Plasma Membrane The Plant Cell: An Overview Nucleus Nuclear Aspects as considered in Selaginella kraussiana • Selaginella kraussiana (right) • (image: Wikipedia) Nucleus • Electron micrographs of nuclei in parenchyma cells of the seedless vascular plant Selaginella kraussiana show the nuclear pores (a, see arrow in following slide) Nuclear Pores in Selaginella kraussiana (surface view), a (arrow) Note the polysomes (coils of ribosomes) on the surface of the nuclear envelope Nucleus • Electron micrographs of nuclei in parenchyma cells of the seedless vascular plant Selaginella kraussiana show the nuclear pores (b) in sectional view • The rough endoplasmic reticulum is seen paralleling the nuclear envelope in (b) • The nucleus is to the left Nuclear Pores in Selaginella Kraussiana (sectional view), b, rough endoplasmic reticulum (nucleus to the left of the arrows) Chromatin in Nicotiana tabacum Chromatin • Parenchyma cell from tobacco (Nicotiana tabacum) leaf, with its nucleus "suspended" in the middle of the cell by strands of cytoplasm (arrows) • The dense granular substance in the nucleus is chromatin, distinguishing it from the nucleoplasm • The less granular regions surrounding the nucleus are portions of a large central vacuole that merge beyond the plane of this cell section Nicotiana quadrivalvis (Indian tobacco) • Used by Native Americans from Oregon to British Columbia • (text & image: Wikipedia) Diagram of a Chloroplast- Containing Plant Cell Diagram of a Chloroplast-containing Plant Cell • Typically, the disk-shaped chloroplasts are located in the cytoplasm along the cell wall, with their broad surfaces facing the surface of the wall • Most of the volume of this cell is occupied by a vacuole (surrounded by the tonoplast), which is traversed by a few strands of cytoplasm • Tonoplast: membrane surrounding the vacuole • Cytosol, thick fluid that fills a cell • Cytoplasm: cytosol plus organelles • In this cell, the nucleus lies in the cytoplasm along the wall, although in some cells (see Figure 3—6) it might appear suspended by strands of cytoplasm in the center of the vacuole Ribosomes are formed in the cytosol and serve as the sites of protein synthesis Polysomes (or Polyribosomes), complexes of an mRNA molecule and two or more, that are formed during active translation (mRNA involved in providing information translated in ribosomes indicating amino acid sequences to synthesize proteins in ribosomes) Polysomes • Numerous polysomes (clusters of ribosomes) are seen here on the surface of rough endoplasmic reticulum • The endoplasmic reticulum is a network of membranes extending throughout the cytosol of the eukaryotic cell, dividing it into compartments and providing surfaces on which chemical reactions can take place • Cytosol: part of the cell inside of the cell membrane, excluding the organelles • Polysomes are the sites at which amino acids are assembled into proteins • This electron micrograph shows a portion of a leaf cell from the fern Regnellidium diphyllum Regnellidium diphyllum • Regnellidium is a monotypic genus of ferns of family Marsileaceae • The single living species, Regnellidium diphyllum, the two-leaf water fern, is native to southeastern Brazil and adjacent regions of Argentina • It resembles its relatives from the genus Marsilea [M. vestita, water-clover, is native to WA] • (image and text: Wikipedia) Chloroplasts and Other Plastids Chloroplasts are the sites of photosynthesis Orientation of Chloroplasts Orientation of Chloroplasts • As shown in cross sections through the leaf of Arabadopsis thaliana, chloroplasts move to maximize or minimize their absorption of light, which is entering from the top of the micrographs • (a) Under dim light, chloroplasts (dark objects along the edges of the cells) move to the cell walls parallel to the leaf surface, thus maximizing light absorption for photosynthesis • (b) In bright light, chloroplasts migrate to the cell walls perpendicular to the light surface, thus minimizing light absorption and photodamage Internal Structure of a Chloroplast Internal Structure of a Chloroplast • (a) Section of a chloroplast of a maize (Zea mays) leaf showing grana and stroma thylakoids • The word thylakoid comes from the Greek word thylakos meaning "sac" or "pouch" • Grana <grain • (b) Detail showing a granum, which is composed of stacks of disklike thylakoids • The thylakoids of the various grana are interconnected by the stroma thylakoids Chloroplast Structure • Showing: • Thylakoids (membrane-bound compartments inside chloroplasts, associated with photosynthesis) • Consist of a thylakoid membrane surrounding a thylakoid • Stroma (and, in previous
Recommended publications
  • Root Hydrotropism, Or Any Other Plant Differential C
    American Journal of Botany 100(1): 14–24. 2013. R OOT HYDROTROPISM: AN UPDATE 1 G LADYS I. CASSAB 2 , D ELFEENA E APEN, AND M ARÍA EUGENIA C AMPOS Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Col. Chamilpa, Cuernavaca, Mor. 62250 México While water shortage remains the single-most important factor infl uencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, tem- perature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fi xed in direction and intensity. However, other environmental factors, such as water potential gradients, which fl uctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1 , and MIZ2 , which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational fi eld, light or touch stimuli.
    [Show full text]
  • Plant:Animal Cell Comparison
    Comparing Plant And Animal Cells http://khanacademy.org/video?v=Hmwvj9X4GNY Plant Cells shape - most plant cells are squarish or rectangular in shape. amyloplast (starch storage organelle)- an organelle in some plant cells that stores starch. Amyloplasts are found in starchy plants like tubers and fruits. cell membrane - the thin layer of protein and fat that surrounds the cell, but is inside the cell wall. The cell membrane is semipermeable, allowing some substances to pass into the cell and blocking others. cell wall - a thick, rigid membrane that surrounds a plant cell. This layer of cellulose fiber gives the cell most of its support and structure. The cell wall also bonds with other cell walls to form the structure of the plant. chloroplast - an elongated or disc-shaped organelle containing chlorophyll. Photosynthesis (in which energy from sunlight is converted into chemical energy - food) takes place in the chloroplasts. chlorophyll - chlorophyll is a molecule that can use light energy from sunlight to turn water and carbon dioxide gas into glucose and oxygen (i.e. photosynthesis). Chlorophyll is green. cytoplasm - the jellylike material outside the cell nucleus in which the organelles are located. Golgi body - (or the golgi apparatus or golgi complex) a flattened, layered, sac-like organelle that looks like a stack of pancakes and is located near the nucleus. The golgi body modifies, processes and packages proteins, lipids and carbohydrates into membrane-bound vesicles for "export" from the cell. lysosome - vesicles containing digestive enzymes. Where the digestion of cell nutrients takes place. mitochondrion - spherical to rod-shaped organelles with a double membrane.
    [Show full text]
  • Ultrastructure of Cells and Microanalysis in Malus Domestica Borkh. 'Szampion' Fruit in Relation to Varied Calcium Foliar Fe
    molecules Article Ultrastructure of Cells and Microanalysis in Malus domestica Borkh. ‘Szampion’ Fruit in Relation to Varied Calcium Foliar Feeding Piotr Kowalik 1, Tomasz Lipa 1 , Zenia Michałoj´c 1 and Mirosława Chwil 2,* 1 Institute of Horticulture Production, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; [email protected] (P.K.); [email protected] (T.L.); [email protected] (Z.M.) 2 Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland * Correspondence: [email protected] Received: 18 August 2020; Accepted: 8 October 2020; Published: 11 October 2020 Abstract: Calcium is one of the most poorly reutilized nutrients. Its deficiencies cause various physiological disturbances and, consequently, reduce the quantity and quality of yields. Reduced content of Ca2+ ions in cells leads to development of, e.g., bitter pit in apples. Efficient and instantaneous mitigation of Ca2+ deficiencies is provided by foliar feeding. There are no detailed data on the effect of foliar feeding with various calcium forms on the cell structure or on the microanalysis and mapping of this element in apple fruit cells. Therefore, we carried out comparative studies of the ultrastructure of epidermis and hypodermis cells, to assess the content and distribution of calcium in the cell wall, cytoplasmic membrane, cytoplasm, and precipitates of Malus domestica Borkh. ‘Szampion’ fruit exposed to four Ca treatments, including the control with no additional Ca supplementation (I) and foliar applications of Ca(NO3)2 (II), CaCl2 (III), and Ca chelated with EDTA (IV).
    [Show full text]
  • 2 the Structure and Ultrastructure of the Cell Gunther Neuhaus Institut Fu¨R Zellbiologie, Freiburg, Germany
    2 The Structure and Ultrastructure of the Cell Gunther Neuhaus Institut fu¨r Zellbiologie, Freiburg, Germany 2.1 Cell Biology . .........................40 2.2.7.6 Isolating Secondary Walls . 107 2.1.1 Light Microscopy . 43 2.2.8 Mitochondria . 109 2.1.2 Electron Microscopy . 45 2.2.8.1 Shape Dynamics and Reproduction . 110 2.2.8.2 Membranes and Compartmentalization in 2.2 The Plant Cell . .........................46 Mitochondria . 112 2.2.1 Overview . 46 2.2.9 Plastids . 113 2.2.2 The Cytoplasm . 50 2.2.9.1 Form and Ultrastructure of 2.2.2.1 The Cytoskeleton . 51 Chloroplasts . 114 2.2.2.2 Motor Proteins and Cellular Kinetic 2.2.9.2 Other Plastid Types, Starches . 116 Processes . 55 2.2.2.3 Flagella and Centrioles . 57 2.3 Cell Structure in Prokaryotes ............. 119 2.2.3 The Cell Nucleus . 59 2.3.1 Reproduction and Genetic Apparatus . 122 2.2.3.1 Chromatin . 60 2.3.2 Bacterial Flagella . 124 2.2.3.2 Chromosomes and Karyotype . 63 2.3.3 Wall Structures . 125 2.2.3.3 Nucleoli and Preribosomes . 64 2.2.3.4 Nuclear Matrix and Nuclear Membrane . 65 2.4 The Endosymbiotic Theory and the 2.2.3.5 Mitosis and the Cell Cycle . 66 Hydrogen Hypothesis . ............. 125 2.2.3.6 Cell Division . 73 2.4.1 Endocytobiosis . 126 2.2.3.7 Meiosis . 73 2.4.2 Origin of Plastids and Mitochondria by 2.2.3.8 Crossing-Over . 79 Symbiogenesis . 127 2.2.3.9 Syngamy . 79 2.2.4 Ribosomes .
    [Show full text]
  • Identifying Genetic Factors That Contribute to Trait Variation Among Species Is Difficult
    Identifying genetic factors that contribute to trait variation among species is difficult. Weiss et al. developed a method for unbiased genome-scale mapping of trait differences and used it to work out how a range of yeast species evolved. When crossed, these yeast species produce sterile offspring, preventing the use of traditional genetic-mapping techniques. However, by reciprocal hemizygosity analysis via sequencing (RH-seq), alleles that contributed to differences in thermotolerance were spotted that diverged between two species. Surprisingly, these turned out to map to essential housekeeping genes. Thus, without taking a candidate locus approach, RH-seq allowed identification of genes responsible for traits that differ between species. Nat. Genet. 50, 1501 (2018). https://www.sciencemag.org/news/2018/11/researchers-launch-plan-sequence-66000-species-united-kingdom-s-just- start?utm_campaign=news_weekly_2018-11-02&et_rid=328058488&et_cid=2465523 The Earth BioGenome Project aims to sequence the genome of every complex organism on Earth — that’s 1.5 million species — and will probably cost $US4.7 billion. The project brings together more than a dozen existing ventures that focus on various slices of life, such as specific types of animal or the creatures of a particular country. Among the largest commitments to the effort so far is a plan by the the Wellcome Sanger Institute to decode the genomes of all the eukaryotic species in the United Kingdom, thought to number about 66,000. Nature | 3 min read https://www.sciencemag.org/news/2018/11/poop-vault-human-feces-could-preserve-gut-biodiversity-and-help-treat- disease?utm_campaign=news_weekly_2018-11-02&et_rid=328058488&et_cid=2465523 Bacterial Heme-Based Sensors of Nitric Oxide Dominique E.
    [Show full text]
  • The-Plant-Cell.Pdf
    Levetin−McMahon: Plants II. Introduction to Plant 2. The Plant Cell © The McGraw−Hill and Society, Fifth Edition Life: Botanical Principles Companies, 2008 UNIT II CHAPTER OUTLINE Early Studies of Cells 20 The Cell Wall 22 The Protoplast 22 Membranes 22 Moving Into and Out of Cells 22 Organelles 23 A CLOSER LOOK 2.1 Origin of Chloroplasts and Mitochondria 25 The Nucleus 26 Cell Division 26 The Cell Cycle 26 Prophase 27 Metaphase 27 Anaphase 27 Telophase 27 Cytokinesis 27 Chapter Summary 30 Review Questions 30 Further Reading 30 KEY CONCEPTS 1. The Cell Theory establishes that the cell is the basic unit of life, that all living organisms are composed of cells, and that cells arise from preexisting cells. 2. Plant cells are eukaryotic, having an organized nucleus and membrane-bound organelles. 3. Substances can move into and out of cells by diffusion and osmosis. 4. Mitosis, followed by cytokinesis, results in two genetically identical daughter cells. Growth, replacement of cells, and asexual reproduction all depend on the process of cell division. CHAPTER 2 The Plant Cell Plantlets are produced by vegetative reproduction on the leaf margin of kalanchoe. Mitosis is the underlying cell division for vegetative or asexual reproduction. 19 Levetin−McMahon: Plants II. Introduction to Plant 2. The Plant Cell © The McGraw−Hill and Society, Fifth Edition Life: Botanical Principles Companies, 2008 20 UNIT II Introduction to Plant Life: Botanical Principles ll plants (and every other living organism) are com- posed of cells. In some algae and fungi, the whole A organism consists of a single cell, but angiosperms are complex multicellular organisms composed of many dif- ferent types of cells.
    [Show full text]
  • Roles of Autophagy in Chloroplast Recycling☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1837 (2014) 512–521 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Review Roles of autophagy in chloroplast recycling☆ Hiroyuki Ishida a,⁎, Masanori Izumi b,ShinyaWadaa, Amane Makino a,c a Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan b Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan c Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan article info abstract Article history: Chloroplasts are the primary energy suppliers for plants, and much of the total leaf nitrogen is distributed to these Received 29 July 2013 organelles. During growth and reproduction, chloroplasts in turn represent a major source of nitrogen to be re- Received in revised form 1 November 2013 covered from senescing leaves and used in newly-forming and storage organs. Chloroplast proteins also can be Accepted 7 November 2013 an alternative substrate for respiration under suboptimal conditions. Autophagy is a process of bulk degradation Available online 19 November 2013 and nutrient sequestration that is conserved in all eukaryotes. Autophagy can selectively target chloroplasts as whole organelles and or as Rubisco-containing bodies that are enclosed by the envelope and specifically contain Keywords: Autophagy the stromal portion of the chloroplast. Although information is still limited, recent work indicates that chloroplast Chloroplast recycling via autophagy plays important roles not only in developmental processes but also in organelle quality Leaf senescence control and adaptation to changing environments.
    [Show full text]
  • Role of Endodermal Cell Vacuoles in Shoot Gravitropism
    J Plant Growth Regul 2002) 21:113±119 DOI: 10.1007/s003440010047 Role of Endodermal Cell Vacuoles in Shoot Gravitropism Takehide Kato,1 Miyo Terao Morita,2 and Masao Tasaka2,* 1Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan 2Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0101, Japan ABSTRACT In higher plants, shoots and roots show negative endodermis would function as statoliths, just as in and positive gravitropism, respectively. Data from roots. surgical ablation experiments and analysis of starch The study of the sgr2 and zig/sgr4 mutants pro- de®cient mutants have led to the suggestion that vides new insights into the early steps of shoot columella cells in the root cap function as gravity gravitropism, which still remains unclear. SGR2 and perception cells. On the other hand, endodermal ZIG/SGR4 genes encode a phospholipase-like and a cells are believed to be the statocytes that is, gravity v-SNARE protein, respectively. Moreover, these perceiving cells) of shoots. Statocytes in shoots and genes are involved in vacuolar formation or func- roots commonly contain amyloplasts which sedi- tion. Thus, the vacuole must play an important role ment under gravity. Through genetic research with in amyloplast sedimentation because the sgr2 and Arabidopsis shoot gravitropism mutants, sgr1/scr and zig/sgr4 mutants display abnormal amyloplast sedi- sgr7/shr, it was determined that endodermal cells are mentation. essential for shoot gravitropism. Moreover, some starch biosynthesis genes and EAL1 are important for the formation and maturation of amyloplasts in Key words: Shoot gravitropism; Endodermis; shoot endodermis.
    [Show full text]
  • Quantitative Analysis of the Grain Amyloplast Proteome Reveals
    Ma et al. BMC Genomics (2018) 19:768 https://doi.org/10.1186/s12864-018-5174-z RESEARCH ARTICLE Open Access Quantitative analysis of the grain amyloplast proteome reveals differences in metabolism between two wheat cultivars at two stages of grain development Dongyun Ma1,2*† , Xin Huang1†, Junfeng Hou1, Ying Ma1, Qiaoxia Han1, Gege Hou1, Chenyang Wang1,2 and Tiancai Guo1 Abstract Background: Wheat (Triticum aestivum L.) is one of the world’s most important grain crops. The amyloplast, a specialized organelle, is the major site for starch synthesis and storage in wheat grain. Understanding the metabolism in amyloplast during grain development in wheat cultivars with different quality traits will provide useful information for potential yield and quality improvement. Results: Two wheat cultivars, ZM366 and YM49–198 that differ in kernel hardness and starch characteristics, were used to examine the metabolic changes in amyloplasts at 10 and 15 days after anthesis (DAA) using label-free-based proteome analysis. We identified 523 differentially expressed proteins (DEPs) between 10 DAA and 15 DAA, and 229 DEPs between ZM366 and YM49–198. These DEPs mainly participate in eight biochemical processes: carbohydrate metabolism, nitrogen metabolism, stress/defense, transport, energetics-related, signal transduction, protein synthesis/assembly/degradation, and nucleic acid-related processes. Among these proteins, the DEPs showing higher expression levels at 10 DAA are mainly involved in carbohydrate metabolism, stress/defense, and nucleic acid related processes, whereas DEPs with higher expression levels at 15 DAA are mainly carbohydrate metabolism, energetics-related, and transport-related proteins. Among the DEPs between the two cultivars, ZM366 had more up-regulated proteins than YM49–198, and these are mainly involved in carbohydrate metabolism, nucleic acid-related processes, and transport.
    [Show full text]
  • ER Membrane-Localized Oxidoreductase Ero1 Is Required for Disulfide Bond Formation in the Rice Endosperm
    ER membrane-localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm Yayoi Ondaa, Toshihiro Kumamarub, and Yasushi Kawagoea,1 aDivision of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan; and bInstitute of Genetic Resources, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan Edited by Bob B. Buchanan, University of California, Berkeley, CA, and approved July 1, 2009 (received for review April 22, 2009) The developing endosperm of rice (Oryza sativa, Os) synthesizes a one constitutes the major small-molecule redox buffer in the ER. large amount of storage proteins on the rough (r)ER. The major The redox state of the ER is more oxidative than that of the cytosol storage proteins, glutelins and prolamins, contain either intra or in eukaryotic cells. The ratio of reduced glutathione to oxidized intermolecular disulfide bonds, and oxidative protein folding is nec- form ([glutathione (GSH)]/[oxidized glutathione (GSSG)]) ranges essary for the sorting of the proteins to the protein bodies. Here, we from 1:1 to 3:1 in the ER, whereas it ranges from 30:1 to 100:1 in investigated an electron transfer pathway for the formation of the cytosol (8). In the endosperm cells, which are devoted to the protein disulfide bonds in the rER of the rice endosperm, focusing on synthesis of disulfide-rich storage proteins, large amounts of reduc- the roles of the thiol-disulfide oxidoreductase, OsEro1. Confocal ing equivalents flux from the cytosol into the ER in the form of Cys microscopic analysis revealed that N-glycosylated OsEro1 is localized residues during the synthesis of storage proteins, and storage to the rER membrane in the subaleurone cells, and that targeting of proteins are sequestered from the ER lumen to the PBs.
    [Show full text]
  • Imaging Amyloplasts in the Developing Endosperm of Barley and Rice
    www.nature.com/scientificreports OPEN Imaging Amyloplasts in the Developing Endosperm of Barley and Rice Received: 28 September 2018 Ryo Matsushima & Hiroshi Hisano Accepted: 14 February 2019 Amyloplasts are plant-specifc organelles responsible for starch biosynthesis and storage. Inside Published: xx xx xxxx amyloplasts, starch forms insoluble particles, referred to as starch grains (SGs). SG morphology difers between species and SG morphology is particularly diverse in the endosperm of Poaceae plants, such as rice (Oryza sativa) and barley (Hordeum vulgare), which form compound SGs and simple SGs, respectively. SG morphology has been extensively imaged, but the comparative imaging of amyloplast morphology has been limited. In this study, SG-containing amyloplasts in the developing endosperm were visualized using stable transgenic barley and rice lines expressing amyloplast stroma-targeted green fuorescent protein fused to the transit peptide (TP) of granule-bound starch synthase I (TP- GFP). The TP-GFP barley and rice plants had elongated amyloplasts containing multiple SGs, with constrictions between the SGs. In barley, some amyloplasts were connected by narrow protrusions extending from their surfaces. Transgenic rice lines producing amyloplast membrane-localized SUBSTANDARD STARCH GRAIN6 (SSG6)-GFP were used to demonstrate that the developing amyloplasts contained multiple compound SGs. TP-GFP barley can be used to visualize the chloroplasts in leaves and other plastids in pollen and root in addition to the endosperm, therefore it provides as a useful tool to observe diverse plastids. Amyloplasts are a type of plastid surrounded by a double lipid bilayer of inner and outer envelope membranes1. Plants develop amyloplasts in storage organs such as the endosperm and tubers to biosynthesize and store glucose as starch.
    [Show full text]
  • Direct Transport of Adpglucose by an Adenylate Translocator Is Linked to Starch Biosynthesis in Amyloplasts
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 5769-5773, July 1991 Plant Biology Direct transport of ADPglucose by an adenylate translocator is linked to starch biosynthesis in amyloplasts (carboxyatractyloside/double silicone oil layer centrifugation/starch synthase/sucrose synthase/sycamore) JAVIER POZUETA-ROMERO, MARCO FREHNER*, ALEJANDRO M. VIALEt, AND TAKASHI AKAZAWA Research Institute for Biochemical Regulation, School of Agriculture, Nagoya University, Chikusa, Nagoya 464-01, Japan Communicated by Andre T. Jagendorf, February 19, 1991 ABSTRACT Starch biosynthesis has been studied by using Previously, we reported the detection, by immunoanalysis, amyloplasts isolated from cultured cells ofsycamore trees (Acer of a putative adenylate (ATP/ADP) translocator in the amy- pseudoplatanus L.). Highly purified intact amyloplasts, free loplast envelopes isolated from cultured sycamore cells (6). from mitochondria and starch granules derived from broken We have now examined the kinetic properties of this trans- amyloplasts, were isolated from a Percoll step gradient. Sub- porter by using intact amyloplast preparations and have sequently, the double silicone oil layer centrifugation technique found evidence for the direct transport ofADP-Glc across the was used to study adenylate transport in the amyloplasts. An amyloplast envelope, which is tightly linked to the formation adenylate-specific carrier was found to be active in the uptake of starch. of ATP, ADP, AMP, and, most importantly, ADPglucose (ADP-Glc). Kinetic analyses showed that the uptake of these MATERIALS AND METHODS adenylates was mutually competitive with each other. In con- Cell Culture and Amyloplast Isolation. Amyloplasts from trast to the mitochondrial adenylate carrier, in amyloplasts nonstarved suspension culture cells of sycamore trees (Acer only ATP and ADP-Glc uptake were inhibited by carboxya- pseudoplatanus L.) were isolated according to the Percoll tractyloside.
    [Show full text]