Directional Gravity Sensing in Gravitropism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Root Hydrotropism, Or Any Other Plant Differential C
American Journal of Botany 100(1): 14–24. 2013. R OOT HYDROTROPISM: AN UPDATE 1 G LADYS I. CASSAB 2 , D ELFEENA E APEN, AND M ARÍA EUGENIA C AMPOS Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Col. Chamilpa, Cuernavaca, Mor. 62250 México While water shortage remains the single-most important factor infl uencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, tem- perature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fi xed in direction and intensity. However, other environmental factors, such as water potential gradients, which fl uctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1 , and MIZ2 , which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational fi eld, light or touch stimuli. -
An Integrative Model of Plant Gravitropism Linking Statoliths
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.01.425032; this version posted January 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 An integrative model of plant gravitropism linking statoliths position and auxin transport Nicolas Levernier 1;∗, Olivier Pouliquen 1 and Yoël Forterre 1 1Aix Marseille Univ, CNRS, IUSTI, Marseille, France Correspondence*: IUSTI, 5 rue Enrico Fermi, 13453 Marseille cedex 13, France [email protected] 2 ABSTRACT 3 Gravity is a major cue for the proper growth and development of plants. The response of 4 plants to gravity implies starch-filled plastids, the statoliths, which sediments at the bottom of 5 the gravisensing cells, the statocytes. Statoliths are assumed to modify the transport of the 6 growth hormone, auxin, by acting on specific auxin transporters, PIN proteins. However, the 7 complete gravitropic signaling pathway from the intracellular signal associated to statoliths to 8 the plant bending is still not well understood. In this article, we build on recent experimental 9 results showing that statoliths do not act as gravitational force sensor, but as position sensor, to 10 develop a bottom-up theory of plant gravitropism. The main hypothesis of the model is that the 11 presence of statoliths modifies PIN trafficking close to the cell membrane. This basic assumption, 12 coupled with auxin transport and growth in an idealized tissue made of a one-dimensional array 13 of cells, recovers several major features of the gravitropic response of plants. -
Plant:Animal Cell Comparison
Comparing Plant And Animal Cells http://khanacademy.org/video?v=Hmwvj9X4GNY Plant Cells shape - most plant cells are squarish or rectangular in shape. amyloplast (starch storage organelle)- an organelle in some plant cells that stores starch. Amyloplasts are found in starchy plants like tubers and fruits. cell membrane - the thin layer of protein and fat that surrounds the cell, but is inside the cell wall. The cell membrane is semipermeable, allowing some substances to pass into the cell and blocking others. cell wall - a thick, rigid membrane that surrounds a plant cell. This layer of cellulose fiber gives the cell most of its support and structure. The cell wall also bonds with other cell walls to form the structure of the plant. chloroplast - an elongated or disc-shaped organelle containing chlorophyll. Photosynthesis (in which energy from sunlight is converted into chemical energy - food) takes place in the chloroplasts. chlorophyll - chlorophyll is a molecule that can use light energy from sunlight to turn water and carbon dioxide gas into glucose and oxygen (i.e. photosynthesis). Chlorophyll is green. cytoplasm - the jellylike material outside the cell nucleus in which the organelles are located. Golgi body - (or the golgi apparatus or golgi complex) a flattened, layered, sac-like organelle that looks like a stack of pancakes and is located near the nucleus. The golgi body modifies, processes and packages proteins, lipids and carbohydrates into membrane-bound vesicles for "export" from the cell. lysosome - vesicles containing digestive enzymes. Where the digestion of cell nutrients takes place. mitochondrion - spherical to rod-shaped organelles with a double membrane. -
Regulation of the Gravitropic Response and Ethylene Biosynthesis in Gravistimulated Snapdragon Spikes by Calcium Chelators and Ethylene Lnhibitors’
Plant Physiol. (1996) 110: 301-310 Regulation of the Gravitropic Response and Ethylene Biosynthesis in Gravistimulated Snapdragon Spikes by Calcium Chelators and Ethylene lnhibitors’ Sonia Philosoph-Hadas*, Shimon Meir, Ida Rosenberger, and Abraham H. Halevy Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (S.P.-H., S.M., I.R.); and Department of Horticulture, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot 761 00, Israel (A.H.H.) vireacting organ; this causes the growth asymmetry that The possible involvement of Ca2+ as a second messenger in leads to coleoptile reorientation. Originally devised for snapdragon (Antirrhinum majus L.) shoot gravitropism, as well as grass coleoptiles, this theory was soon generalized to ex- the role of ethylene in this bending response, were analyzed in plain the manifold gravitropic reactions of stems and roots terms of stem curvature and gravity-induced asymmetric ethylene as well. Evidence in favor of the Cholodny-Went hypoth- production rates, ethylene-related metabolites, and invertase esis has emerged from various studies showing an asym- activity across the stem. Application of CaZ+ chelators (ethylenedia- metric distribution of auxin, specifically IAA, in gravi- minetetraacetic acid, trans-1,2-cyclohexane dinitro-N,N,N’,N’- stimulated grass coleoptiles (McClure and Guilfoyle, 1989; tetraacetic acid, 1,2-bis(2-aminophenoxy)ethane-N,N,N’,Nf,-tet- Li et al., 1991). However, it appears that changes in sensi- raacetic acid) or a CaZ+ antagonist (LaCI,) to the spikes caused a significant loss of their gravitropic response following horizontal tivity of the gravity receptor and time-dependent gravity- placement. -
Ultrastructure of Cells and Microanalysis in Malus Domestica Borkh. 'Szampion' Fruit in Relation to Varied Calcium Foliar Fe
molecules Article Ultrastructure of Cells and Microanalysis in Malus domestica Borkh. ‘Szampion’ Fruit in Relation to Varied Calcium Foliar Feeding Piotr Kowalik 1, Tomasz Lipa 1 , Zenia Michałoj´c 1 and Mirosława Chwil 2,* 1 Institute of Horticulture Production, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; [email protected] (P.K.); [email protected] (T.L.); [email protected] (Z.M.) 2 Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland * Correspondence: [email protected] Received: 18 August 2020; Accepted: 8 October 2020; Published: 11 October 2020 Abstract: Calcium is one of the most poorly reutilized nutrients. Its deficiencies cause various physiological disturbances and, consequently, reduce the quantity and quality of yields. Reduced content of Ca2+ ions in cells leads to development of, e.g., bitter pit in apples. Efficient and instantaneous mitigation of Ca2+ deficiencies is provided by foliar feeding. There are no detailed data on the effect of foliar feeding with various calcium forms on the cell structure or on the microanalysis and mapping of this element in apple fruit cells. Therefore, we carried out comparative studies of the ultrastructure of epidermis and hypodermis cells, to assess the content and distribution of calcium in the cell wall, cytoplasmic membrane, cytoplasm, and precipitates of Malus domestica Borkh. ‘Szampion’ fruit exposed to four Ca treatments, including the control with no additional Ca supplementation (I) and foliar applications of Ca(NO3)2 (II), CaCl2 (III), and Ca chelated with EDTA (IV). -
Introduction to Gravitropism
CHATTARAJ, PARNA. Gravitropism in Physcomitrella patens : A Microtubule Dependent Process (Under the direction of Dr. Nina Strömgren Allen) The plant cytoskeleton plays an important role in the early stages of gravisignaling (Kiss, 2000). Although in vascular plants, actin filaments are used predominantly to sense changes in the gravity vector, microtubules have been shown to play an important role in moss gravitropism (Schwuchow et al., 1990). The moss Physcomitrella patens is a model organism and was used here to investigate the role of microtubules with respect to the gravitropic response. Dark grown caulonemal filaments of P. patens are negatively gravitropic and the readily imaged tip growing apical cell is a “single-cell system” which both senses and responds to changes in the gravity vector. MTs were imaged before and after gravistimulation with and without MT depolymerizing agents. Six-day-old filaments were embedded in low melting agarose under dim green light, allowed to recover overnight in darkness and gravistimulated for 15, 30, 60 and 120 min. Using indirect immunofluorecence and high resolution imaging, MTs were seen to accumulate in the lower flank of the gravistimulated tip cell starting 30 min post turning and peaking 60 min after gravistimulation of the cells. The microtubule depolymerizing drug, oryzalin (0.1 µM for 5 min), caused MTs to disintegrate and delayed MT redistribution by 3hrs 30min. Growth of the oryzalin treated filaments was analyzed and a delay in growth was observed for both gravi and non-gravistimulated filaments. Tip cells bulged and sometimes branched after 75 min. This study demonstrates that microtubules are important for growth in P. -
2 the Structure and Ultrastructure of the Cell Gunther Neuhaus Institut Fu¨R Zellbiologie, Freiburg, Germany
2 The Structure and Ultrastructure of the Cell Gunther Neuhaus Institut fu¨r Zellbiologie, Freiburg, Germany 2.1 Cell Biology . .........................40 2.2.7.6 Isolating Secondary Walls . 107 2.1.1 Light Microscopy . 43 2.2.8 Mitochondria . 109 2.1.2 Electron Microscopy . 45 2.2.8.1 Shape Dynamics and Reproduction . 110 2.2.8.2 Membranes and Compartmentalization in 2.2 The Plant Cell . .........................46 Mitochondria . 112 2.2.1 Overview . 46 2.2.9 Plastids . 113 2.2.2 The Cytoplasm . 50 2.2.9.1 Form and Ultrastructure of 2.2.2.1 The Cytoskeleton . 51 Chloroplasts . 114 2.2.2.2 Motor Proteins and Cellular Kinetic 2.2.9.2 Other Plastid Types, Starches . 116 Processes . 55 2.2.2.3 Flagella and Centrioles . 57 2.3 Cell Structure in Prokaryotes ............. 119 2.2.3 The Cell Nucleus . 59 2.3.1 Reproduction and Genetic Apparatus . 122 2.2.3.1 Chromatin . 60 2.3.2 Bacterial Flagella . 124 2.2.3.2 Chromosomes and Karyotype . 63 2.3.3 Wall Structures . 125 2.2.3.3 Nucleoli and Preribosomes . 64 2.2.3.4 Nuclear Matrix and Nuclear Membrane . 65 2.4 The Endosymbiotic Theory and the 2.2.3.5 Mitosis and the Cell Cycle . 66 Hydrogen Hypothesis . ............. 125 2.2.3.6 Cell Division . 73 2.4.1 Endocytobiosis . 126 2.2.3.7 Meiosis . 73 2.4.2 Origin of Plastids and Mitochondria by 2.2.3.8 Crossing-Over . 79 Symbiogenesis . 127 2.2.3.9 Syngamy . 79 2.2.4 Ribosomes . -
Identifying Genetic Factors That Contribute to Trait Variation Among Species Is Difficult
Identifying genetic factors that contribute to trait variation among species is difficult. Weiss et al. developed a method for unbiased genome-scale mapping of trait differences and used it to work out how a range of yeast species evolved. When crossed, these yeast species produce sterile offspring, preventing the use of traditional genetic-mapping techniques. However, by reciprocal hemizygosity analysis via sequencing (RH-seq), alleles that contributed to differences in thermotolerance were spotted that diverged between two species. Surprisingly, these turned out to map to essential housekeeping genes. Thus, without taking a candidate locus approach, RH-seq allowed identification of genes responsible for traits that differ between species. Nat. Genet. 50, 1501 (2018). https://www.sciencemag.org/news/2018/11/researchers-launch-plan-sequence-66000-species-united-kingdom-s-just- start?utm_campaign=news_weekly_2018-11-02&et_rid=328058488&et_cid=2465523 The Earth BioGenome Project aims to sequence the genome of every complex organism on Earth — that’s 1.5 million species — and will probably cost $US4.7 billion. The project brings together more than a dozen existing ventures that focus on various slices of life, such as specific types of animal or the creatures of a particular country. Among the largest commitments to the effort so far is a plan by the the Wellcome Sanger Institute to decode the genomes of all the eukaryotic species in the United Kingdom, thought to number about 66,000. Nature | 3 min read https://www.sciencemag.org/news/2018/11/poop-vault-human-feces-could-preserve-gut-biodiversity-and-help-treat- disease?utm_campaign=news_weekly_2018-11-02&et_rid=328058488&et_cid=2465523 Bacterial Heme-Based Sensors of Nitric Oxide Dominique E. -
Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response
International Journal of Molecular Sciences Review Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response Nataliia Konstantinova, Barbara Korbei and Christian Luschnig * Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria; [email protected] (N.K.); [email protected] (B.K.) * Correspondence: [email protected] Abstract: Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general. Citation: Konstantinova, N.; Korbei, B.; Luschnig, C. Auxin and Root Keywords: auxin; polar auxin transport; root gravitropism; PIN-FORMED Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. -
Plant Hormones and Tropic Responses
Chapter 3: Plant Hormones and Tropic Responses Plant Hormones and Tropic Responses Brief Description: • Potting soil here are many hormones in plants and they all play diferent • Polystyrene cups roles. In this lesson students will learn about hormones such as • Scissors ethylene, gibberellins, cytokinin, absiscic acid and the applica- • Aluminum tray tion of hormones in commercial horticulture. • Fertilizer • Water Tropic responses in plants are those responses to light, gravity and touch. In this lesson students will learn about the difer- Vocabulary: ent tropic responses and set up experiments to demonstrate apical bud, branch, cell, cell wall, cell membrane, chloroplast, hormone efects and plant responses to stimulus. Data will be lower, fruit, internode, lateral bud, leaf blade, nucleus node, collected and summarized in tables and graphs. organelle petiole, root, root cap, stem, tissue, vacuole, abscisic acid, auxin, cytokinin, ethylene, geotropic, gibberellin, Objective: hormone, phototropic, tropism and thigmotropic Students will be able to: 1. Grow a plant from a seed. Background: 2. Identify parts of a plant and plant cells. Plant Tissues and Structure: Plants are composed of cells 3. Understand the role plant hormones play in plant which together with other similar cells make tissues. Groups of growth. tissues form plant organs such as roots, stems, leaves and low- 4. Understand what plant tropisms are. ers (if present). 5. Work in groups to design and conduct an experiment to demonstrate a plant hormone or tropic response. Hormones and Tropisms: he distribution and concentra- tion of plant hormones occur on a cellular level. he presence, Time: absence, or balance of hormone in a tissue afects a tropism in Part I. -
Tropisms, Nastic Movements, & Photoperiods
Tropisms, Nastic Movements, & Photoperiods Plant Growth & Development Tropisms Defined as: ____________________________ ______________________________________ ______________________________________ 3 Types: - Phototropism - ____________ - Thigmotropism Tropisms Defined as: Plant growth responses to environmental stimuli that occur in the direction of the stimuli 3 Types: - Phototropism - Gravitropism - Thigmotropism Phototropism Defined as: the tendency of a plant to grow toward a light source Cool corn - Can be within hours - Caused by ________________ ____________________________ ____________________________ Phototropism Defined as: the tendency of a plant to grow toward a light source Cool corn - Can be within hours - Caused by changes in auxin concentrations; auxins migrate to shaded tissue, causing elongation of cells Gravitropism Defined as: tendency of shoots to grow upwards (_________ gravitropism) and roots to grow downwards (____________ gravitropism) - Also related to auxin migration - Photoreceptors in shoots determine the light source Arabidopsis Gravitropism Defined as: tendency of shoots to grow upwards (negative gravitropism) and roots to grow downwards (positive gravitropism) - Also related to auxin migration - Photoreceptors in shoots determine the light source Arabidopsis Gravitropism - __________ (cells with starch grains instead of chloroplasts) in roots determine the gravitational pull Gravitropism - Stratoliths (cells with starch grains instead of chloroplasts) in roots determine the gravitational pull Thigmotropism -
Plant Tropisms: Providing the Power of Movement to a Sessile Organism
Int. J. Dev. Biol. 49: 665-674 (2005) doi: 10.1387/ijdb.052028ce Plant tropisms: providing the power of movement to a sessile organism C. ALEX ESMON, ULLAS V. PEDMALE and EMMANUEL LISCUM* University of Missouri-Columbia, Division of Biological Sciences, Columbia, Missouri, USA ABSTRACT In an attempt to compensate for their sessile nature, plants have developed growth responses to deal with the copious and rapid changes in their environment. These responses are known as tropisms and they are marked by a directional growth response that is the result of differential cellular growth and development in response to an external stimulation such as light, gravity or touch. While the mechanics of tropic growth and subsequent development have been the topic of debate for more than a hundred years, only recently have researchers been able to make strides in understanding how plants perceive and respond to tropic stimulations, thanks in large part to mutant analysis and recent advances in genomics. This paper focuses on the recent advances in four of the best-understood tropic responses and how each affects plant growth and develop- ment: phototropism, gravitropism, thigmotropism and hydrotropism. While progress has been made in deciphering the events between tropic stimulation signal perception and each character- istic growth response, there are many areas that remain unclear, some of which will be discussed herein. As has become evident, each tropic response pathway exhibits distinguishing characteris- tics. However, these pathways of tropic perception and response also have overlapping compo- nents – a fact that is certainly related to the necessity for pathway integration given the ever- changing environment that surrounds every plant.