The L6 Membrane Proteins—A New Four-Transmembrane Superfamily

Total Page:16

File Type:pdf, Size:1020Kb

The L6 Membrane Proteins—A New Four-Transmembrane Superfamily Protein Science ~2000!, 9:1594–1600. Cambridge University Press. Printed in the USA. Copyright © 2000 The Protein Society FOR THE RECORD The L6 membrane proteins—A new four-transmembrane superfamily MARK D. WRIGHT,1 JIAN NI,2 and GEORGE B. RUDY1 1 The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, 3050 Victoria, Australia 2 Human Genome Sciences, 9410 Key West Avenue, Rockville, Maryland 20850 ~Received March 20, 2000; Final Revision May 25, 2000; Accepted May 25, 2000! Abstract: L6, IL-TMP, and TM4SF5 are cell surface proteins quences clearly related to L6 ~Wice & Gordon, 1995; Muller- predicted to have four transmembrane domains. Previous se- Pilasch et al., 1998!, were also reported to be members of the quence analysis led to their assignment as members of the tet- tetraspanin superfamily. Here, we report the molecular cloning of raspanin superfamily. In this paper, we identify a new sequence a novel membrane protein L6D. Our analyses of its protein se- ~L6D! that is strikingly similar to L6, IL-TMP, and TM4SF5. quence reveal highly significant similarity to L6, IL-TMP, and Analyses of these four sequences indicate that they are not sig- TM4SF5, yet no significant homology to genuine members of the nificantly related to genuine tetraspanins, but instead constitute tetraspanin superfamily is found. Thus, we describe the novel L6 their own L6 superfamily. membrane protein superfamily, distinct from the previously de- fined tetraspanin superfamily. Keywords: L6; superfamily; tetraspanin A database containing more than one million ESTs obtained from greater than 650 different cDNA libraries has been generated by Human Genome Sciences, Inc. and The Institute for Genomic L6 is a highly expressed surface protein of human lung, breast, Research using high throughput automated DNA sequence analysis colon, and ovarian carcinomas that has excited considerable inter- of randomly selected human cDNA clones ~Adams et al., 1995!. est among tumor immunologists as a possible target for mono- Sequence homology comparisons of each EST were performed clonal antibody based cancer therapy ~Hellstrom et al., 1986a, against the GenBank database using the BLAST family of algo- 1986b; Garkavij et al., 1995; Richman et al., 1995!. Molecular rithms ~Altschul et al., 1990!. ESTs having homology to previously cloning of the L6 antigen showed it to be a surface protein with identified sequences ~probability .0.01! were collected in a data- four transmembrane domains, and initial analyses of the L6 se- base. A specific homology search using the known amino acid quence ~Marken et al., 1992! suggested that the protein was a sequence of human L6 against this database revealed several ESTs member of the tetraspanin ~or transmembrane 4! superfamily. The having greater than 30% homology. Several clones were selected tetraspanin superfamily comprises cell surface proteins character- for further investigation. The complete cDNA sequence of L6D ized by four highly conserved transmembrane domains ~Wright & was obtained from a human umbilical endothelial cell library. Tomlinson, 1994; Maecker et al., 1997!. The function of these An alignment of the deduced L6D protein sequence and the tetraspanin proteins is not currently well understood, although sev- other three L6 superfamily members, L6, IL-TMP, and TM4SF5, eral have been implicated in various signal transduction events is shown in Figure 1. For comparison, two typical tetraspanin mediating cell proliferation and activation ~Wright & Tomlinson, proteins, CD53 ~Amiot, 1990! and CD151 ~Fitter et al., 1995!, are 1994; Maecker et al., 1997!. They may also control cell motility, also included. Superficially, L6, IL-TMP, TM4SF5, and L6D do tumor cell metastasis and cellular adhesion, possibly via noncova- display a very limited resemblance to the tetraspanin superfamily. lent molecular interactions with integrins ~Hemler et al., 1996!. They share a similar topology: four transmembrane domains, short However, subsequent sequence analyses have suggested that L6 is cytoplasmic domains at their N- and C-termini, and two extracel- not a bona fide member of the tetraspanin superfamily ~Wright & lular domains, a smaller domain between transmembrane do- Tomlinson, 1994!. This issue has been further confused by the mains 1 and 2 ~TM1 and TM2!, and a larger domain between TM3 molecular cloning of the intestinal and epithelial protein IL-TMP and TM4. This proposed membrane topology has been largely ~Wice & Gordon, 1995! and the prostate cancer expressed protein confirmed by monoclonal antibody epitope mapping analyses of TM4SF5 ~Muller-Pilasch et al., 1998!. These proteins, with se- both genuine tetraspanin proteins ~Tomlinson et al., 1993! and L6 ~Edwards et al., 1995!. Reprint requests to: Dr. Mark Wright, The Walter and Eliza Hall Institute L6, IL-TMP, TM4SF5, and L6D show a striking degree of over- of Medical Research, Post Office Royal Melbourne Hospital, 3050 Victo- all identity with one another ~ranging from 38–50%!. This identity ria, Australia; e-mail: [email protected]. is distributed over the entire sequence with the only region that 1594 L6 superfamily 1595 Fig. 1. Alignment of the L6 family member sequences, L6 ~Marken et al., 1992!, IL-TMP ~Wice & Gordon, 1995!, TM4SF5 ~Muller-Pilasch et al., 1998!, and L6D; and two typical members of the tetraspanin superfamily, CD53 ~Amiot, 1990! and CD151 ~Fitter et al., 1995!. The alignment shown is a modification of that obtained using PILEUP ~Program Manual for the Wisconsin Package, Version 8, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin!. Identical residues present in at least three sequences are boxed. Putative transmembrane domains are shaded. Residues strongly conserved in the tetraspanin superfamily are highlighted in the CD53 and CD151 sequences. shows a greater divergence being the C-terminal cytoplasmic do- ited similarity to those of the genuine tetraspanins ~Fig. 1!. The main. This is in stark contrast to the tetraspanin superfamily, where length ~in amino acid residues! of the transmembrane domains, transmembrane domains are very highly conserved, but cytoplas- strongly conserved among genuine tetraspanins, is clearly very mic domains and extracellular domains show a much greater de- different in the L6-like molecules. Moreover, the degree of se- gree of divergence ~Wright & Tomlinson, 1994!. It is therefore quence conservation in the transmembrane domains, comparing notable that the L6 transmembrane domains show only very lim- the L6-like molecules with the genuine tetraspanins, is not impres- 1596 M.D. Wright et al. sive. In particular, the @A0G#@F0V#LGC motif ~highlighted in peripherin ~Farrar et al., 1991!, the sarcoma-expressed molecule Fig. 1!, which is present in TM2 of all but the most divergent SAS ~Jankowski et al., 1994!, and the bladder epithelial protein tetraspanin molecules, is completely absent from the L6 superfamily. uroplakin 1B ~Yu et al., 1994!. Included in the analyses as controls The L6 proteins lack a number of other features shared by were 3 four-transmembrane proteins from superfamilies known to almost all tetraspanin proteins and also have characteristics not be unrelated to the tetraspanin superfamily: CD20 ~Tedder et al., shared with the tetraspanins. The major extracellular domain of the 1988!, the gap junction protein connexin a-1 ~Fishman et al., tetraspanins, although relatively divergent, has four highly con- 1990!, and the acetylcholine receptor a protein ~Noda et al., 1983!. served cysteine residues contained in the following motifs: CCG, It is clear from the ALIGN analyses ~Table 1! that L6, IL-TMP, PXSC, EGC ~highlighted in Fig. 1!. These four cysteines, which TM4SF5, and L6D are very closely related to one another with participate in disulphide bond formation critical to the correct align scores all greater than 18. The degree of similarity within the folding of this domain ~Oligino et al., 1988; Levy et al., 1991; “canonic” tetraspanin proteins is also apparent, as all scores within Tomlinson et al., 1993!, and the CCG motif in particular are ab- this subgroup were .7. The ability of these analyses to detect solutely conserved in sequences of bona fide tetraspanin proteins. distant evolutionary relationships is shown by the analyses of the However, the equivalent domain of the L6 superfamily proteins unusual tetraspanin proteins, RDS and Rom-1, which are particu- does not contain these four conserved cysteine residues; rather, larly similar to one another, and showed seven and five ALIGN there are two cysteine residues, neither of which occurs in the scores of .3, respectively, when aligned to other tetraspanins. In motifs found in the tetraspanins. On this point, there are CCG contrast, L6, IL-TMP, TM4SF5, and L6D showed only 1, 0, 1, and motifs which do occur in the L6, IL-TMP, and TM4SF5 sequences 1 ALIGN scores greater than three in alignments to known mem- ~but not the L6D sequence! and which have been previously high- bers of the tetraspanin superfamily. This degree of similarity is no lighted as sequence which does show homology to the tetraspanin greater than that observed for the unrelated connexin a-1 mol- superfamily ~Wice & Gordon, 1995!. However, it must be pointed ecule, which showed a surprising degree of similarity to CD53 out that these sequences do not occur in the extracellular domain. ~ALIGN score 3.69! in the total absence of similarity to any other Rather, they are in the cytoplasmic domain between TM2 and tetraspanin protein. These
Recommended publications
  • Chemoprevention with Cyclooxygenase and Epidermal Growth Factor Receptor Inhibitors in Familial Adenomatous Polyposis Patients
    Published OnlineFirst November 6, 2017; DOI: 10.1158/1940-6207.CAPR-17-0130 Research Article Cancer Prevention Research Chemoprevention with Cyclooxygenase and Epidermal Growth Factor Receptor Inhibitors in Familial Adenomatous Polyposis Patients: mRNA Signatures of Duodenal Neoplasia Don A. Delker1, Austin C. Wood2, Angela K. Snow2, N. Jewel Samadder1,2, Wade S. Samowitz2,3, Kajsa E. Affolter2,3, Kenneth M. Boucher1,2, Lisa M. Pappas2, Inge J. Stijleman2, Priyanka Kanth1, Kathryn R. Byrne1, Randall W. Burt1,2, Philip S. Bernard2,3, and Deborah W. Neklason1,2 Abstract To identify gene expression biomarkers and pathways tar- pared with paired baseline normal for patients on placebo geted by sulindac and erlotinib given in a chemoprevention and drug show that pathways activated in polyp growth and trial with a significant decrease in duodenal polyp burden at proliferation are blocked by this drug combination. Directly 6months(P < 0.001) in familial adenomatous polyposis comparing polyp gene expression between patients on drug (FAP) patients, we biopsied normal and polyp duodenal and placebo also identified innate immune response genes tissuesfrompatientsondrugversusplaceboandanalyzed (IL12 and IFNg) preferentially expressed in patients on drug. the RNA expression. RNA sequencing was performed on Gene expression analyses from tissue obtained at endpoint of biopsies from the duodenum of FAP patients obtained at the trial demonstrated inhibition of the cancer pathways baseline and 6-month endpoint endoscopy. Ten FAP patients COX2/PGE2, EGFR, and WNT. These findings provide molec- on placebo and 10 on sulindac and erlotinib were selected for ular evidence that the drug combination of sulindac and analysis. Purity of biopsied polyp tissue was calculated from erlotinib reached the intended tissue and was on target for RNA expression data.
    [Show full text]
  • Supplementary Information Integrative Analyses of Splicing in the Aging Brain: Role in Susceptibility to Alzheimer’S Disease
    Supplementary Information Integrative analyses of splicing in the aging brain: role in susceptibility to Alzheimer’s Disease Contents 1. Supplementary Notes 1.1. Religious Orders Study and Memory and Aging Project 1.2. Mount Sinai Brain Bank Alzheimer’s Disease 1.3. CommonMind Consortium 1.4. Data Availability 2. Supplementary Tables 3. Supplementary Figures Note: Supplementary Tables are provided as separate Excel files. 1. Supplementary Notes 1.1. Religious Orders Study and Memory and Aging Project Gene expression data1. Gene expression data were generated using RNA- sequencing from Dorsolateral Prefrontal Cortex (DLPFC) of 540 individuals, at an average sequence depth of 90M reads. Detailed description of data generation and processing was previously described2 (Mostafavi, Gaiteri et al., under review). Samples were submitted to the Broad Institute’s Genomics Platform for transcriptome analysis following the dUTP protocol with Poly(A) selection developed by Levin and colleagues3. All samples were chosen to pass two initial quality filters: RNA integrity (RIN) score >5 and quantity threshold of 5 ug (and were selected from a larger set of 724 samples). Sequencing was performed on the Illumina HiSeq with 101bp paired-end reads and achieved coverage of 150M reads of the first 12 samples. These 12 samples will serve as a deep coverage reference and included 2 males and 2 females of nonimpaired, mild cognitive impaired, and Alzheimer's cases. The remaining samples were sequenced with target coverage of 50M reads; the mean coverage for the samples passing QC is 95 million reads (median 90 million reads). The libraries were constructed and pooled according to the RIN scores such that similar RIN scores would be pooled together.
    [Show full text]
  • Distinguishing Pleiotropy from Linked QTL Between Milk Production Traits
    Cai et al. Genet Sel Evol (2020) 52:19 https://doi.org/10.1186/s12711-020-00538-6 Genetics Selection Evolution RESEARCH ARTICLE Open Access Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle Zexi Cai1*†, Magdalena Dusza2†, Bernt Guldbrandtsen1, Mogens Sandø Lund1 and Goutam Sahana1 Abstract Background: Production and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that afect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Efect-bearing variants often afect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic efects of variants in candidate genes. However, large sample sizes are required to achieve sufcient power. Multi-trait meta-analysis is one approach to deal with this prob- lem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance. Results: For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis com- pared with the subjective assessment of overlapping of single-trait QTL confdence intervals. Pleiotropic efects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confrmed by bivariate association analysis. The previously reported pleiotropic efects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic efects of variants in GHR on milk yield and fat yield were con- frmed.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Trypsin-Encoding PRSS1-PRSS2 Variations
    ARTICLE Acute Lymphoblastic Leukemia Ferrata Storti Foundation Trypsin-encoding PRSS1-PRSS2 variations influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report Haematologica 2019 Benjamin O. Wolthers,1 Thomas L. Frandsen,1 Chirag J. Patel,2 Rachid Abaji,3 Volume 104(3):556-563 Andishe Attarbaschi,4 Shlomit Barzilai,5 Antonella Colombini,6 Gabriele Escherich,7 Marie Grosjean,8 Maja Krajinovic,3,9 Eric Larsen,10 Der-Cherng Liang,11 Anja Möricke,12 Kirsten K. Rasmussen,1 Sujith Samarasinghe,13 Lewis B. Silverman,14 Inge M. van der Sluis,15 Martin Stanulla,16 Morten Tulstrup,1 Rachita Yadav,8,17 Wenjian Yang,18 Ester Zapotocka,19 Ramneek Gupta8 and Kjeld Schmiegelow1,20 on behalf of the Ponte di Legno toxicity working group 1Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark; 2Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; 3CHU Sainte-Justine Research Center and Department of Pharmacology, University of Montreal, QC, Canada; 4Department of Pediatric Hematology and Oncology, St Anna Children's Hospital and Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Austria; 5Pediatric Hematology and Oncology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel and Sackler Faculty of Medicine, Tel Aviv University, Israel; 6Department of Pediatrics, Ospedale San Gerardo, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy;
    [Show full text]
  • Completing the C-HPP MP50 Challenge for Chromosome 17 (2016-2019)
    Completing the C-HPP MP50 Challenge for Chromosome 17 (2016-2019) Hongjiu Zhang, PhD, Bioinformatics Student Gilbert S. Omenn, MD, PhD Harold T. Shapiro Distinguished University Professor Center for Computational Medicine and Bioinformatics University of Michigan, Ann Arbor, MI, USA Chair, HUPO Human Proteome Project 21st C-HPP Workshop: “Dark Proteome” Saint-Malo, France 12 May 2019 Chromosome 17 Missing Proteins Strategy focused on Annotation, following Chr 2/14 Consortium (Duek et al, 2016) The number of PE2,3,4 Chr 17 Missing Proteins was reduced from 148 in neXtProt release 2016-01 to 105 in release 2018-01. We had 43 new PE 1 proteins toward the next-50 MP goal of 50 officially announced by the C-HPP in September 2016 at the Sun Moon Lake HPP Workshop. Progress for Chromosome 17 was as follows: neXtProt version PE2+3+4 PE2 PE3 PE4 [PE5] 2016-01 148 123 19 6 23 2017-01 125 103 17 5 23 2017-08 114 98 12 4 23 2018-01 105 88 13 4 23 How 43 MPs were Upgraded to PE1 between 2016 and 2018 in neXtProt by MS +/- PPI Omer Siddiqui, Hongjiu Zhang, Yuanfang Guan, Gil Omenn Overall Strategy for Finding the Remaining 105 Chr 17 MPs with MS or PPI For MS, 99/105 have 2 predicted proteotypic peptides; 29 have one annotated in neXtProt Among 29 with a single proteotypic peptide in PA/neXtProt, we found a second non- nested “stranded” peptide for 7 in GPMdb with PXD identifier and data in PRIDE ** Spectral Match of Observed and Synthetic DLLPSQTASSLCISSR Peptide for PIRT Summary of 35 High-Priority Chr 17 MPs The Net of 7 Fewer PE2,3,4 Missing Proteins from Chromosome 17 Table 1 shows the 13 MPs promoted to PE1, plus 3 new neXtProt entries directly assigned to PE1 (CD300H, SPEM3, and SMIM36).
    [Show full text]
  • Entrez ID Gene Name Fold Change Q-Value Description
    Entrez ID gene name fold change q-value description 4283 CXCL9 -7.25 5.28E-05 chemokine (C-X-C motif) ligand 9 3627 CXCL10 -6.88 6.58E-05 chemokine (C-X-C motif) ligand 10 6373 CXCL11 -5.65 3.69E-04 chemokine (C-X-C motif) ligand 11 405753 DUOXA2 -3.97 3.05E-06 dual oxidase maturation factor 2 4843 NOS2 -3.62 5.43E-03 nitric oxide synthase 2, inducible 50506 DUOX2 -3.24 5.01E-06 dual oxidase 2 6355 CCL8 -3.07 3.67E-03 chemokine (C-C motif) ligand 8 10964 IFI44L -3.06 4.43E-04 interferon-induced protein 44-like 115362 GBP5 -2.94 6.83E-04 guanylate binding protein 5 3620 IDO1 -2.91 5.65E-06 indoleamine 2,3-dioxygenase 1 8519 IFITM1 -2.67 5.65E-06 interferon induced transmembrane protein 1 3433 IFIT2 -2.61 2.28E-03 interferon-induced protein with tetratricopeptide repeats 2 54898 ELOVL2 -2.61 4.38E-07 ELOVL fatty acid elongase 2 2892 GRIA3 -2.60 3.06E-05 glutamate receptor, ionotropic, AMPA 3 6376 CX3CL1 -2.57 4.43E-04 chemokine (C-X3-C motif) ligand 1 7098 TLR3 -2.55 5.76E-06 toll-like receptor 3 79689 STEAP4 -2.50 8.35E-05 STEAP family member 4 3434 IFIT1 -2.48 2.64E-03 interferon-induced protein with tetratricopeptide repeats 1 4321 MMP12 -2.45 2.30E-04 matrix metallopeptidase 12 (macrophage elastase) 10826 FAXDC2 -2.42 5.01E-06 fatty acid hydroxylase domain containing 2 8626 TP63 -2.41 2.02E-05 tumor protein p63 64577 ALDH8A1 -2.41 6.05E-06 aldehyde dehydrogenase 8 family, member A1 8740 TNFSF14 -2.40 6.35E-05 tumor necrosis factor (ligand) superfamily, member 14 10417 SPON2 -2.39 2.46E-06 spondin 2, extracellular matrix protein 3437
    [Show full text]
  • TM4SF5 (W-12): Sc-165713
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . TM4SF5 (W-12): sc-165713 BACKGROUND PRODUCT TM4SF5 (transmembrane 4 L6 family member 5) is a 197 amino acid multi- Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide pass membrane protein that belongs to the transmembrane 4 superfamily (also and 0.1% gelatin. known as the tetraspanin family) of cell surface proteins that regulate cell Blocking peptide available for competition studies, sc-165713 P, (100 µg development, activation, growth and motility. Expressed in normal intestinal peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). tissue and overexpressed in tumor cells (including hepatocarcinoma, gastric and colon cancer cells), TM4SF5 is a glycoprotein that is thought to play a APPLICATIONS role in cellular proliferation and growth factor signaling. When upregulated, TM4SF5 can cause erratic and uncontrolled cell growth of human cancer cells, TM4SF5 (W-12) is recommended for detection of TM4SF5 of human origin indicating a crucial role for TM4SF5 in tumor progression and metastasis. The by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), gene encoding TM4SF5 maps to human chromosome 17, which comprises immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and over 2.5% of the human genome and encodes over 1,200 genes. solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); non cross-reactive with other TM4SF family members. REFERENCES Suitable for use as control antibody for TM4SF5 siRNA (h): sc-94048, 1.
    [Show full text]
  • Quantitative Trait Loci Mapping of Macrophage Atherogenic Phenotypes
    QUANTITATIVE TRAIT LOCI MAPPING OF MACROPHAGE ATHEROGENIC PHENOTYPES BRIAN RITCHEY Bachelor of Science Biochemistry John Carroll University May 2009 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY December 2017 We hereby approve this thesis/dissertation for Brian Ritchey Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies by ______________________________ Date: _________ Dissertation Chairperson, Johnathan D. Smith, PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, David J. Anderson, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Baochuan Guo, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Stanley L. Hazen, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Renliang Zhang, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Aimin Zhou, PhD Department of Chemistry, Cleveland State University Date of Defense: October 23, 2017 DEDICATION I dedicate this work to my entire family. In particular, my brother Greg Ritchey, and most especially my father Dr. Michael Ritchey, without whose support none of this work would be possible. I am forever grateful to you for your devotion to me and our family. You are an eternal inspiration that will fuel me for the remainder of my life. I am extraordinarily lucky to have grown up in the family I did, which I will never forget.
    [Show full text]
  • Trypsin-Encoding PRSS1-PRSS2 Variations Influence the Risk Of
    Trypsin-encoding PRSS1-PRSS2 variations influence the risk of asparaginase- associated pancreatitis in children with acute lymphoblastic leukemia A ponte di legno toxicity working group report on behalf of the Ponte di Legno toxicity working group Published in: Haematologica DOI: 10.3324/haematol.2018.199356 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): on behalf of the Ponte di Legno toxicity working group (2019). Trypsin-encoding PRSS1-PRSS2 variations influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: A ponte di legno toxicity working group report. Haematologica, 104(3), 556-563. https://doi.org/10.3324/haematol.2018.199356 Download date: 30. Sep. 2021 ARTICLE Acute Lymphoblastic Leukemia Ferrata Storti Foundation Trypsin-encoding PRSS1-PRSS2 variations influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report Haematologica 2019 Benjamin O. Wolthers,1 Thomas L. Frandsen,1 Chirag J. Patel,2 Rachid Abaji,3 Volume 104(3):556-563 Andishe Attarbaschi,4 Shlomit Barzilai,5 Antonella Colombini,6 Gabriele Escherich,7 Marie Grosjean,8 Maja Krajinovic,3,9 Eric Larsen,10 Der-Cherng Liang,11 Anja Möricke,12 Kirsten K. Rasmussen,1 Sujith Samarasinghe,13 Lewis B. Silverman,14 Inge M. van der Sluis,15 Martin Stanulla,16 Morten Tulstrup,1 Rachita Yadav,8,17 Wenjian Yang,18 Ester Zapotocka,19 Ramneek
    [Show full text]
  • Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 is online at: average * The Journal of Immunology published online 20 March 2013 from submission to initial decision 4 weeks from acceptance to publication Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke, Man Liu, Gur Yaari, Ashraf M. Khalil, Mary M. Tomayko, Mark J. Shlomchik, David G. Schatz and Steven H. Kleinstein J Immunol http://www.jimmunol.org/content/early/2013/03/20/jimmun ol.1202547 Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/03/20/jimmunol.120254 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. Published March 20, 2013, doi:10.4049/jimmunol.1202547 The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G.
    [Show full text]
  • (TM4SF5), CD151, and CD63 in Liver Fibrotic Phenotypes and Hepatic Migration and Invasive Capacities
    Correction Correction: Correlations between Transmembrane 4 L6 Family Member 5 (TM4SF5), CD151, and CD63 in Liver Fibrotic Phenotypes and Hepatic Migration and Invasive Capacities The PLOS ONE Staff The affiliation for the fourteenth author is incorrect. Semi Kim is not affiliated with #4 but with #5 Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea. Reference 1. Kang M, Ryu J, Lee D, Lee M-S, Kim H-J, et al. (2014) Correlations between Transmembrane 4 L6 Family Member 5 (TM4SF5), CD151, and CD63 in Liver Fibrotic Phenotypes and Hepatic Migration and Invasive Capacities. PLoS ONE 9(7): e102817. doi:10.1371/journal.pone.0102817 Citation: The PLOS ONE Staff (2014) Correction: Correlations between Transmembrane 4 L6 Family Member 5 (TM4SF5), CD151, and CD63 in Liver Fibrotic Phenotypes and Hepatic Migration and Invasive Capacities. PLoS ONE 9(10): e110148. doi:10.1371/journal.pone.0110148 Published October 2, 2014 Copyright: ß 2014 The PLOS ONE Staff. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e110148 Correlations between Transmembrane 4 L6 Family Member 5 (TM4SF5), CD151, and CD63 in Liver Fibrotic Phenotypes and Hepatic Migration and Invasive Capacities Minkyung Kang1,2, Jihye Ryu2, Doohyung Lee2, Mi-Sook Lee2,
    [Show full text]