Ecosystem-Based Adaptation: an Effective Tool for Adapting to Climate Change in Urban Areas

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystem-Based Adaptation: an Effective Tool for Adapting to Climate Change in Urban Areas Ecosystem-based Adaptation: An effective tool for adapting to climate change in urban areas Points to remember In the next five to ten years, climate change impacts are expected to affect the lives [Policy in Practice] [Policy • Ecosystem services are essential to and livelihoods of hundreds of millions of Latin-American and Caribbean urban the very existence and sustainability of urban settings. Urban planners and dwellers. As local governments look for tools to reduce climate change impacts policy makers are urged to consider them when elaborating adaptation on urban settings, Ecosystem-based Adaptation (EbA) a framework advocated strategies to address impacts of climate change. by the UNEP, has proved to be a low-cost yet effective option. EbA reduces • EbA considers the ecosystem services that city dwellers depend on and vulnerability while providing multiple benefits to society and the environment by focuses on protecting, maintaining or rehabilitating them in order to adapt to protecting, maintaining and rehabilitating ecosystems and biodiversity. This policy climate change. • EbA options have often proven to be brief aims to identify key issues and best practices that policy makers should less costly to implement and result in greater environment and social benefits. consider when implementing EbA in urban settlements. Why Ecosystem-based Adaptation? acknowledged to have several additional benefits facilitate mobilization of species, sustainable water for city dwellers. Among them: treatment systems in cities) and innovative funding, Urban areas are dependent on a multitude of as well as the development of partnerships with a resources and processes, which are provided XXNatural hazard risk reduction; wide range of stakeholders (the private sector, local inside and outside of their political boundaries (e.g. XXCarbon sequestration; neighborhoods, community-based organizations, food, water, coastal protection, fuelwood, waste XXBiodiversity protection; non-governmental organizations and academia). To decomposition and pollination). Called ecosystem XXMaintain water quality and availability; go even further in the implementation of EbA at services, they are essential to urban activities and XXEnhance food security; the municipal level, the integration of sustainability population as well as to the biodiversity of urban XXGenerate social, and cultural co-benefits into municipal plans and programs is essential. In ecosystem. through the revival and conservation of local that regard, the creation of a Municipal Adaptation The pace of urbanization and the impacts of knowledge; Plan (MAP) for climate change has proven valuable climate change have, however, been detrimental XXGenerate economic benefits (e.g. job as shown by the implementation of the Quito to ecosystem services which in turn increased opportunities, tourism); Strategy for Climate Change (QSCC). Keeping vulnerability of urban inhabitants and, forcing XXDisease regulation. in mind that essential urban ecosystem services them to adapt. Rising sea levels, increased annual depend on a wider regional area than the city precipitation, increased erosion and more How to integrate EbA in the policy process at itself, policy makers should be careful when frequent and intense storm events have and will the municipal scale? defining meaningful units of application and should continue to have important economic, social and ultimately consider working hand-in-hand with environmental costs for cities. While EbA has mainly been applied to rural regional or national institutions. With 79% of the Latin American and Caribbean settings, urban ecosystems can greatly benefit URBAN ENVIRONMENT AND CLIMATE CHANGE OUTLOOK (ECCO) CHANGE OUTLOOK AND CLIMATE ENVIRONMENT URBAN population living in cities, the capacity of local from them. In order to do so, policy makers first Constraints governments to assess the threats of climate require access to relevant information needed to change, and to take action is crucial. Until recently, make strategic decisions. In that regard, Integrated XXDifficult and costly to evaluate actual value of many of the climate change adaptation initiatives in Environmental Assessment (IEA), a methodology ecosystem: policy makers opt for traditional cities have focused on the use of technologies and/ based on the DPSIR (Drivers, Pressures, State, adaptation strategies; or the development of infrastructure. However, Impact, Response) analysis could help cities “map XXEcosystems services often come from those efforts have proven to be costly and often out” ecosystem services and apprehend their outside the municipality itself, requiring incompatible with other sustainable development vulnerability in front of climate change related cooperation between different government initiatives. events. The integration of EbA in the policy authorities; process should also involve the identification of XXLack of adequate and specific institutions, What is Ecosystem-based Adaptation? local human and financial resources, including technologies and funding for climate change the promotion of creative practical solutions (e.g. adaptation at the municipal level. Ecosystem-based adaptation is a strategy which green corridors inside and in-between cities to focuses on the protection, maintenance or rehabilitation of ecosystem resources and services Classes of ecosystem services and benefits for cities in order to adapt to climate change. Examples Food crops, livestock production, fresh Provisioning Increase urban food security include urban reforestation to limit urban heat- water, energy crops island effects and protection and rehabilitation of Limit impacts on urban air, water and soil Coastal protection, CO sequestration, mangroves which help protect urban coasts from Regulating 2 pollution, protect coastal cities against flood attenuation, Detoxification of waste erosion and disasters and maintain the breeding climate related natural hazard habitats of fish and other marine organisms. Cultural Recreation & amenity, aesthetic Increase tourism and quality of life In addition to reducing our vulnerability to Natural habitat for species, pollination, Limit energy use in cities, support urban actual or expected climate change effects, EbA is Supporting energy capture biodiversity United Nations Environment Programme (UNEP) http://www.unep.org What is being done and how effective is it? Ecosystem-based Adaptation options Issue EbA Options Additional benefits Policy Tools XCity beautification XProtect/restore local forest XEnhances recreational values X Adaptive management policy. XUrban reforestation XReduces energy use XEnhance property values Urban Reforestation Programme in Peru Since 2008, the Urban Reforestation Programme (Programa de Arborización Urbana) implemented by the Environmental Management Service of Soil erosion Trujillo (Peru) (Servicio de Gestión Ambiental de Trujillo) has captured carbon emissions and diminished heat island effects through the annual planting of 10 000 trees inside the city limits. The project has been successful at increasing native tree cover which both protects the soil and supports urban biodiversity. EbA Options Additional benefits Policy Tools XUrban agriculture (UA) XGeneration of incomes XIntegrate UA in land use planning; XRevival of traditional farming practices XFuel wood security XPromote innovative funding (e.g. Payment for XAgroforestry systems XWater regulation and air quality Ecosystem Services) XProtection of pollinators Urban agriculture in Cuba In an effort to face the impact of both economic and social crisis, the national government of Cuba created in 1994 the National Group for Urban Food security Food Agriculture (Grupo Nacional de Agricultura Urbana) inside the Ministry of Agriculture, with strong links to the local level. UA has been integrated into the legal national framework (Environmental Law 81) as well as 28 subprograms which are divided in 12 subprograms related to crops, 7 subprograms related to livestock and 9 subprograms focused on supporting urban farmers. Presently, 40% of the city of La Havana’s households are involved in UA, producing 25 000 tons of food annually. EbA Options Additional benefits Policy Tools XProtection of glaciers XIntegrate sustainability in municipal and XPreserve habitat for vulnerable species XUrban reforestation regional planning Adaptation project on impacts of accelerated Andean tropical glaciers retreat in Ecuador The Adaptation project on impacts of accelerated Andean tropical glaciers retreat (Proyecto de adaptación a los impactos del retroceso acelerado de los glaciares tropicales andinos) is a joint project established by the regional institution of the Quito Metropolitan District (Ecuador) and the GEF/World temperature Bank-MAE and focused on the small watersheds located around the Antisana volcano. This Volcano, located 45km southeast from Quito, is one of the Increase of global Increase city main water supply. The main objectives of the project are: inclusion of sectoral development projects of glacier retreat impacts, the generation of data on glacier dynamics and their impact on the availability of water resources EbA Options Additional benefits Policy Tools XIdentify and protect ecologically critical XPromote participation of all stakeholders areas XPreserve habitat for vulnerable species XPreserve ecosystem services outside city XProtection of glaciers limits Protection of watershed in Colombia 85% of Bogota’s (Colombia) population and its surroundings are dependent on
Recommended publications
  • Urban Forestry Management Plan
    Urban Forestry Management Plan Brownsburg Hendricks County, Indiana Prepared For: Town of Brownsburg Department of Planning and Building Department of Parks and Recreation 61 North Green Street Brownsburg, Indiana 46112 December 2011 Williams Creek Consulting, Inc. Corporate Office 919 North East Street Indianapolis, Indiana 46202 Satellite Offices: Columbus, Ohio St. Louis, Missouri 1-877-668-8848 [email protected] Urban Forestry Management Plan December 2011 Brownsburg, Indiana TABLE OF CONTENTS Urban Forestry Management Plan Page Executive Summary...........................................................................................................1 Acknowledgements .......................................................................................................... 2 1.0 Introduction ....................................................................................................................... 3 1.1 Project Description and Purpose 1.2 Municipal Government Coordination 1.3 Project Location 2.0 Existing Conditions .......................................................................................................... 3 2.1 Tree Inventory 2.1.1 Methodology 2.1.2 Data Analysis 2.1.3 Species Composition 2.1.4 Tree Health 2.2 Ecological and Economic Benefits 2.2.1 Ecological Values 2.2.2 Economic Values 3.0 Conclusions and Management Recommendations ....................................................... 9 3.1 Urban Reforestation Opportunities and Constraints 3.1.1 Street Trees 3.1.2 Park/Landscape Trees 3.1.3 Forest
    [Show full text]
  • The Urban Forest and Environmental Justice
    Author: Nicholas P. Boyd THE URBAN Faculty Adviser: Dr. Nisha Botchwey FOREST AND Date: April 28, 2017 ENVIRONMENTAL JUSTICE A Review of the Literature Table of Contents: Introduction .............................................................................................. 2 Historic Background of Urban Forestry ........................................................................... 2 National Decline of Urban Tree Canopy and Local Efforts to Mititage That Decline ............... 4 Methods .................................................................................................... 6 The Benefits of Trees for Physical and Mental Health ............................ 7 Physical Health ...................................................................................................... 7 Mental Health ...................................................................................................... 10 The Benefits of Trees for Social and Economic Health .......................... 14 Social Health ........................................................................................................ 14 Economic Health .................................................................................................. 18 Urban Trees and Vulnerable Populations ................................................ 21 Perceptions of the Urban Forest ............................................................................. 21 Urban Forestry Programs and Tools for Vulnerable Populations .......................... 24 Conclusions
    [Show full text]
  • Urban Reforestation Site Assessment
    Urban Watershed Forestry Manual Chapter 2. Urban Reforestation Site Assessment The Urban Reforestation Site Assessment (URSA) is used to collect detailed information about planting site conditions. The URSA provides a tool to help organize important data to help determine where and what to plant, and what special methods are needed to prepare the site and reduce conflicts due to existing site constraints. The purpose of an URSA is to collect data at the most promising reforestation sites in an urban watershed, in order to develop detailed planting plans. The goal is to have all the available information about an individual planting area contained in a single form. This chapter describes the URSA in detail. For more information on methods to select, screen, and prioritize candidate planting sites across a watershed or development site, consult Part 1 (Chapter 2) and Part 2 (Chapter 2) of this manual series. Nine major elements are evaluated at each potential reforestation site to develop an effective planting strategy: 1. General Site Information – information about the location, property owner, and current land use at the site. 2. Climate – climate data, to help select tree and shrub species 3. Topography – local topographic features that may present planting difficulty 4. Vegetation – data on current vegetative cover, to determine if removal of vegetation is necessary and to select tree and shrub species 5. Soils – soil characteristics, to determine if soil amendments are needed, and to select appropriate tree and shrub species 6. Hydrology – site drainage, to determine if the site has capacity to provide water quality treatment of storm water runoff, and to select tree and shrub species most tolerant of the prevailing soil moisture regime 7.
    [Show full text]
  • Testimony of Dr. Joseph Fargione
    Testimony of Dr. Joseph Fargione Science Director, North America Region, The Nature Conservancy Before the US House of Representatives Select Committee on the Climate Crisis October 22, 2019 Chair Castor, Ranking Member Graves, and members of the Committee, thank you for inviting me to testify on natural solutions to cutting pollution and building resilience. I am Joseph Fargione, Science Director for the North America Region of The Nature Conservancy (TNC). Founded in 1951, TNC is a global environmental nonprofit working to create a world where people and nature can thrive. Thanks to more than a million members and the dedicated efforts of our diverse staff and more than 400 scientists, we work in all 50 U.S. states and impact conservation in 72 countries across six continents. Climate change is no longer a distant threat. We are currently living with its impacts, as Americans are seeing chronic drought, rising seas, record high temperatures, more frequent extreme storms and fires, and significant economic losses (USGCRP 2017). The climate crisis is endangering people, livelihoods, and decades of work on the conservation of America’s wildlife and environment. Addressing climate change is necessary to create a world where both people and nature thrive, where we provide food and goods for our growing population, design healthy and livable cities, and conserve and protect lands, freshwaters, and oceans. To create this world, American innovation and leadership is both capable and necessary. The Nature Conservancy is committed to tackling climate change and to helping vulnerable people and places deal with the impacts of a changing climate, including increasingly extreme weather conditions.
    [Show full text]
  • Factors Driving Natural Regeneration Beneath a Planted Urban Forest T ⁎ Danica A
    Urban Forestry & Urban Greening 29 (2018) 238–247 Contents lists available at ScienceDirect Urban Forestry & Urban Greening journal homepage: www.elsevier.com/locate/ufug Factors driving natural regeneration beneath a planted urban forest T ⁎ Danica A. Doroskia, , Alexander J. Felsona, Mark A. Bradforda, Mark P. Ashtona, Emily E. Oldfielda, Richard A. Hallettb, Sara E. Kuebbinga a School of Forestry & Environmental Studies, Yale University, 360 Prospect St., New Haven, CT 06511 USA b USDA Forest Service Northern Research Station, New York City Urban Field Station, 431 Walter Reed Rd., Bayside, NY 11359, USA ARTICLE INFO ABSTRACT Keywords: Cities around the world are investing in urban forest plantings as a form of green infrastructure. The aim is that Afforestation these plantations will develop into naturally-regenerating native forest stands. However, woody plant recruit- Compost ment is often cited as the most limiting factor to creating self-sustaining urban forests. As such, there is interest in Invasive species site treatments that promote recruitment of native woody species and simultaneously suppress woody non-native New York city recruitment. We tested how three, common site treatments—compost, nurse shrubs, and tree species composi- Recruitment tion (six-species vs. two-species)—affected woody plant recruitment in 54 experimental plots beneath a large- Reforestation scale tree planting within a high-traffic urban park. We identified naturally regenerating seedling and sapling species and measured their abundance six-years after the site was planted. This enabled us to examine initial recruitment dynamics (i.e. seedlings) and gain a better understanding of seedling success as they transition to the midstory (i.e.
    [Show full text]
  • Shaken, Shrinking, Hot, Impoverished and Informal: Emerging Research Agendas in Planning
    Progress in Planning 72 (2009) 195–250 www.elsevier.com/locate/pplann Shaken, shrinking, hot, impoverished and informal: Emerging research agendas in planning Hilda Blanco a,1,*, Marina Alberti a,1 a Department of Urban Design and Planning, Box 355740, University of Washington, Seattle, WA 98195-5740, USA Robert Olshansky b,2, Stephanie Chang c,2 b Department of Urban and Regional Planning, University of Illinois at Urbana-Champaign, 611 Taft Drive, Champaign, IL 61829, USA c School of Community and Regional Planning, University of British Columbia, 242-1933 West Mall, Vancouver, BC V6T 1Z2, Canada Stephen M. Wheeler d,3, John Randolph e,3, James B. London f,3 d Landscape Architecture Program, Department of Environmental Design, University of California at Davis, One Shields Ave., Davis, CA 95616, USA e Department of Urban Affairs & Planning, Virginia Tech, 201-C Architecture Annex (0113), Blacksburg, VA 24061 USA f College of Architecture, Art, and Humanities, Clemson University, Clemson, SC 29634, USA Justin B. Hollander g,4, Karina M. Pallagst h,4, Terry Schwarz i,4, Frank J. Popper j,4 g Urban and Environmental Policy and Planning Department, Tufts University, 97 Talbot Avenue, Medford, MA 02155, USA h Center for Global Metropolitan Studies, University of California at Berkeley, 316 Wurster Hall, Berkeley, CA 94720-1870 USA i Cleveland Urban Design Collaborative, Kent State University, College of Architecture and Environmental Design, 820 Prospect Avenue, Cleveland, OH 44115 USA j Bloustein School of Planning and Public Policy, Rutgers University, 33 Livingston Avenue, Room 535, New Brunswick, NJ 08901-1958, USA Susan Parnell k,5, Edgar Pieterse l,5, Vanessa Watson m,5 k Environmental and Geographical Sciences, University of Cape Town, Rondebosch 7700, South Africa l African Centre for Cities, University of Cape Town, Rondebosch 7700, South Africa m School of Architecture, Planning and Geomatics, University of Cape Town, Rondebosch 7700, South Africa * Corresponding author.
    [Show full text]
  • Reforestation GIP-08
    ACTIVITY: Reforestation GIP-08 Reforestation Description: Reforestation refers to trees planted in groups in urban areas such as: parking lots, right of ways (ROW), parks, schools, public lands, vacant land, and neighborhood open spaces, to provide shade and stormwater retention and to add aesthetic value. Advantages/Benefits: Selection Criteria: • Reduces effective impervious cover Twice the forest Rv factor for the • Reduces stormwater runoff • Provides aesthetic value corresponding soil type. • Provides rainfall interception Equal to the forest Rv factor if amended • Shade provides cooling and energy savings soils are used in conjunction with • Provides habitat reforestation. • Provides pollutant removal • Provides flow attenuation *This GIP is subject to City approval Disadvantages/Limitations: Land Use Considerations: • Poor quality urban soils may require soil amendments or remediation X Residential • Long-term maintenance is required for high tree survival rates • Must be implemented over large areas to see significant X Commercial reduction in stormwater runoff • Time required for trees to mature X Industrial • Poor soils, improper planting methods, conflicts with paved areas and utilities, inputs from road salt, lack of water, or disease can lead to low survival rate • Reforestation not allowed in riparian buffers Design Considerations: Maintenance: • Stormwater trees are limited to areas where there is enough • Trees may require irrigation in dry periods space for fully grown trees as well as utilities and a separation distance from structures. Maintenance Burden • Tree species with desirable stormwater control characteristics L L = Low M = Moderate H = High should be utilized. For trees receiving runoff, tree species must have a high tolerance for common urban pollutants. This includes salt tolerance if receiving runoff from areas treated for snow and ice.
    [Show full text]
  • Sicard Et Al (2018)
    Environmental Pollution 243 (2018) 163e176 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Should we see urban trees as effective solutions to reduce increasing ozone levels in cities?* * Pierre Sicard a, , Evgenios Agathokleous b, c, Valda Araminiene d, Elisa Carrari e, Yasutomo Hoshika e, Alessandra De Marco f, Elena Paoletti e a ARGANS, Sophia Antipolis, France b Hokkaido Research Centre, Forestry and Forest Products Research Institute, Sapporo, Japan c Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan d Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Girionys, Lithuania e Consiglio Nazionale Delle Ricerche, Sesto Fiorentino, Italy f Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy article info abstract Article history: Outdoor air pollution is considered as the most serious environmental problem for human health, Received 23 April 2018 associated with some million deaths worldwide per year. Cities have to cope with the challenges due to Received in revised form poor air quality impacting human health and citizen well-being. According to an analysis in the 23 July 2018 framework of this study, the annual mean concentrations of tropospheric ozone (O3)havebeen Accepted 15 August 2018 À increasing by on average 0.16 ppb year 1 in cities across the globe over the time period 1995e2014. Green Available online 20 August 2018 urban infrastructure can improve air quality by removing O3.Toefficiently reduce O3 in cities, it is important to define suitable urban forest management, including proper species selection, with focus on Keywords: Air pollution the removal ability of O3 and other air pollutants, biogenic emission rates, allergenic effects and main- Green infrastructure tenance requirements.
    [Show full text]
  • Where the People Are Current Trends and Future Potential Targeted
    Landscape and Urban Planning 177 (2018) 227–240 Contents lists available at ScienceDirect Landscape and Urban Planning journal homepage: www.elsevier.com/locate/landurbplan Research Paper Where the people are: Current trends and future potential targeted T investments in urban trees for PM10 and temperature mitigation in 27 U.S. Cities ⁎ Timm Kroegera, , Robert I. McDonaldb, Timothy Bouchera, Ping Zhangc, Longzhu Wangd a Office of the Chief Scientist, The Nature Conservancy, 4245 North Fairfax Drive, Suite 100, Arlington, VA 22203, USA b Global Cities Program, The Nature Conservancy, 4245 North Fairfax Drive Suite 100, Arlington, VA 22203, USA c NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA d China Regional Office, The Nature Conservancy, Beijing 100600, China ARTICLE INFO ABSTRACT Keywords: Urban trees reduce respirable particulate matter (PM10) concentrations and maximum daytime summer tem- Urban forest peratures. While most cities are losing tree cover, some are considering ambitious planting efforts. Maximizing Particulate matter PM10 and heat mitigation for people from such efforts requires cost-effective targeting. We adapt published Urban heat methods to estimate the impact of a decade (2004–2014) of tree cover change on city-level PM10 and heat Return on investment mitigation in 27 U.S. cities and present a new methodology for estimating local-level PM and heat mitigation Targeting 10 by street trees and tree patches. We map potential tree planting sites in the 27 cities and use our local-level PM Ecosystem services 10 and heat mitigation methods to assess the population-weighted return on investment (ROI) of each site for PM10 and heat abatement for nearby populations.
    [Show full text]
  • Climate Adaptation Design Principles for Urban Development
    Purpose of this Document The purpose of this document is to outline design principles that can be used to help develop policy and regulations for property in Honolulu’s transit-oriented development (TOD) and other urban areas that may be vulnerable to sea level rise (SLR) and other climate change-related hazards. The guidance in this document identifies recommended tools and best practices to consider in designing building sites and structures to be resilient to SLR, flooding, extreme heat, and groundwater inundation. A companion document, Climate Adaptation: Background Research, summarizes international best practices and local initiatives related to climate adaptation in the built environment, including recommendations for next steps. The companion document is available at www.honolulu.gov/tod. Why Design for Climate Resilience? Climate change will affect all aspects of addition to mitigating emissions, the City Scan here for life in Hawai‘i, from natural ecosystems to recognizes that adaptation will be needed the companion human health and the built environment. It is as SLR and other climate-related impacts Background imperative to plan for it now. Many U.S. cities intensify. This will require measures to Research are doing so by adopting new regulations protect or enhance existing development, document and design guidelines to make the built as well as determining when retreat or environment more resilient to SLR flooding, relocation is called for. heat, gradual inundation, and other hazards. Policies are being established in new and In developing this guidance, examples were existing documents, including sustainable consulted from New York, Boston, San community/development plan updates. Francisco, Miami, New Orleans, and other Changes to regulations for both public similar cities around the world to identify and private development are also being best practices applicable to Honolulu.
    [Show full text]
  • Colourful Street Trees." Nature 221(5175): 10-&
    (1969). "Colourful Street Trees." Nature 221(5175): 10-&. (1987). DE-ICING WITH SALT CAN HARM TREES. New York Times: C.7. (1993). "Urban arborcide." Environment 35(10): 21. (1995). Proceedings of the 1995 Watershed Management Symposium. Watershed Management Symposium - Proceedings. (1998). "Cooling hot cities with trees." Futurist 32(4): 13-13. (1998). "Tree Guard 5 - latest from Netlon." Forestry and British Timber: 36. (2000). "ANOTHER FINE MESH!" Forestry and British Timber: 24. (2000). "Nortech Sells Tree Guard Product for $850,000." PR Newswire: 1. (2000). "One Texas town learns the value of its trees." American City & County 115(16): 4. (2000). "Texas City relies on tree canopy to reduce runoff." Civil Engineering 70(10): 18-18. (2001). Proceedings: IEEE 2001 International Geoscience and Remote Sensing Symposium. International Geoscience and Remote Sensing Symposium (IGARSS). (2001). "Protective Gear for New York City Trees." American Forests 107(2): 18. (2001). "Trees May Not Be So Green!" Hart's European Fuels News 5(16): 1. (2002). "Fed assessment forecasts strong timber inventories, more plantations." Timber Harvesting 50(1): 7. (2002). Proceedings: 2002 IEEE International Geoscience and Remote Sensing Symposium. 24th Canadian Symposium on Remote Sensing. International Geoscience and Remote Sensing Symposium (IGARSS). (2002). "Toledo, Ohio - Recycled rubber mulch used on rooftop garden." Biocycle 43(12): 21-21. (2002). "TREE SHELTERS: Lower lining life." Forestry and British Timber: 58. (2003). "The forest lawn siphon project - An HDD success story." Geodrilling International 11(7): 12-14. (2003). "Trenchless technology." Public Works 134(1): 28-29. (2004). Brownfield sites II: Assessment, rehabilitation and development. Brownfield Sites II: Assessment, Rehabilitation and Development.
    [Show full text]
  • Urban Forestry and the Eco-City: Today and Tomorrow
    fI 32 oct .y Urbo q "f0r t'."l r ! >I. !>c c ::; y6+ C'Y" ).-~~d '-' 27 Urban Forestry and the Eco-City: Today and Tomorrow Margaret M. Carreiro and Wayne C. Zipperer In 1990, the Chicago Academy of Sciences held a conference, Sustainable Cities: Preserving and Restoring Urban Biodiversity, which led to the publication of a book entitled The Ecological City (Platt et aI., 1994). This symposium differed from others on cities at that time by focusing principally on cities as habitats for biodiversity. The thrust of the symposium was that interactions between people and nonhuman biological entities in urban landscapes had not received much scientific attention and warranted increased ecological investigation. More than a decade later in Shanghai, the International Meeting on Urban Forestry and Eco-Cities conference explored the role of urban forestry in creating more environmentally sound cities that enhance people's quality of life. During the interval between these two symposia, urban ecology has rapidly developed as an ecological discipline exploring the myriad elements that comprise an urban landscape. No longer are urban ecologists trying to convince the ecological community that urban land­ scapes are important and productive subjects for research, trying to convince planners that ecological concepts need to be incorporated into urban design, or try­ ing to convince environmental managers that a multiple scale approach is needed to manage ecological goods and services and to restore habitats. However, this symposium also revealed that implementation of these principles can be 'difficult for a variety of reasons, not the least of. which is that we still do not understand the nuances of the political and socioecological interactions that affect the structure and function of urban landscapes and how they can be influenced to improve environ­ mental conditions citywide (e.g., Perkins et aI., 2004).
    [Show full text]