Scanned Document
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Morphological Peculiarities of Fruits of the Rare Species Iris Halophila Pall, I. Pumila L. and I. Hungarica Waldst. Et Kit
Plant Introduction, 85/86, 85–92 (2020) https://doi.org/10.46341/PI2020007 UDC 581.47:582.579.2(477-25) RESEARCH ARTICLE Morphological peculiarities of fruits of the rare species Iris halophila Pall, I. pumila L. and I. hungarica Waldst. et Kit. (Iridaceae Juss.) in the conditions of introduction in the meadow-steppe cultural phytocenosis V.V. Gritsenko M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine, Timiryazevska str. 1, 01014 Kyiv, Ukraine; [email protected] Received: 27.01.2020 | Accepted: 23.05.2020 | Published: 30.06.2020 Abstract The objective of this study was to analyze the morphological structure and to reveal common and distinguishing features of the fruit in rare steppe species Iris halophila, I. pumila and I. hungarica introduced in conditions of meadow-steppe cultural phytocenosis in the M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine (NBG). Material and methods. Fruits of I. halophila, I. pumila and I. hungarica were collected on the botanical- geographical plot “Steppes of Ukraine” of NBG during 2015–2019. Fruit parameters were measured using a regular ruler. Morphological terms are provided, according to Artyushenko & Fedorov (1986). Colors were determined by Bondartsev’s (1954) scale. Results. In all analyzed species, the fruit is a trimeric and trilocular loculicidal capsule with multi-seeded locules. This capsule is erect, straight, leathery, glabrous, opening by dehiscence from top to bottom along the dorsal veins of carpels. The morphological peculiarities of the fruits, which may be additional diagnostic characters of these species, are established. In particular, in I. halophila capsule is cylindrical, with the upper part elongated into the apical spout (long, thin, bent to the side). -
AGS Seed List No 69 2020
Seed list No 69 2020-21 Garden Collected Seed 1001 Abelia floribunda 1057 Agrostemma githago 1002 Abies koreana 1058 Albuca canadensis (L. -
Population Genetic Structure of Iris Pumila L. in Ukraine: Effects of Habitat Fragmentation
ACTA BIOLOGICA CRACOVIENSIA Series Botanica 62/1: 51–61, 2020 10.24425/abcsb.2020.131665 POPULATION GENETIC STRUCTURE OF IRIS PUMILA L. IN UKRAINE: EFFECTS OF HABITAT FRAGMENTATION Olena Bublyk1 , Igor Andreev1* , Ivan Parnikoza1,2 , Viktor Kunakh1 1Institute of Molecular Biology and Genetics of NAS of Ukraine, Akad. Zabolotny str., 150, Kyiv, 03143, Ukraine 2National Antarctic Scientific Center of Ukraine, Boulevard Tarasa Shevchenka 16, 01601 Kyiv, Ukraine Received January 10, 2020; revision accepted April 17, 2020 Habitat fragmentation is one of serious threats to biodiversity of nature in today's world. The present study of a typical steppe species Iris pumila L. (Iridaceae) has analyzed the impacts of geographical isolation and population size on genetic diversity and population structure in conditions of habitat fragmentation. The key indices of population genetic variability calculated from the ISSR markers data were on average as follows: Shannon diversity index (S) – 0.188; unbiased Nei’s gene diversity (He) – 0.123; and the average measure of Jaccard’s genetic distances between individuals within populations – 58.4%. Although the largest population had significantly higher values of S and He, the small and marginal populations also showed a comparable level of variation. Most of the genetic variation of I. pumila was distributed within the populations. A strong correlation was found between Nei’s genetic distances and geographic distances between the populations. According to the Bayesian analysis, genetic structure of the populations was highly homogeneous; however, the presence of admixed genotypes indicated the possibility of gene flow between the populations at present. Keywords: conservation, genetic polymorphism, habitat fragmentation, ISSR markers, population genetics INTRODUCTION (Aguilar et al., 2008; Ewers and Didham, 2006). -
(A) Journals with the Largest Number of Papers Reporting Estimates Of
Supplementary Materials Figure S1. (a) Journals with the largest number of papers reporting estimates of genetic diversity derived from cpDNA markers; (b) Variation in the diversity (Shannon-Wiener index) of the journals publishing studies on cpDNA markers over time. Figure S2. (a) The number of publications containing estimates of genetic diversity obtained using cpDNA markers, in relation to the nationality of the corresponding author; (b) The number of publications on genetic diversity based on cpDNA markers, according to the geographic region focused on by the study. Figure S3. Classification of the angiosperm species investigated in the papers that analyzed genetic diversity using cpDNA markers: (a) Life mode; (b) Habitat specialization; (c) Geographic distribution; (d) Reproductive cycle; (e) Type of flower, and (f) Type of pollinator. Table S1. Plant species identified in the publications containing estimates of genetic diversity obtained from the use of cpDNA sequences as molecular markers. Group Family Species Algae Gigartinaceae Mazzaella laminarioides Angiospermae Typhaceae Typha laxmannii Angiospermae Typhaceae Typha orientalis Angiospermae Typhaceae Typha angustifolia Angiospermae Typhaceae Typha latifolia Angiospermae Araliaceae Eleutherococcus sessiliflowerus Angiospermae Polygonaceae Atraphaxis bracteata Angiospermae Plumbaginaceae Armeria pungens Angiospermae Aristolochiaceae Aristolochia kaempferi Angiospermae Polygonaceae Atraphaxis compacta Angiospermae Apocynaceae Lagochilus macrodontus Angiospermae Polygonaceae Atraphaxis -
Vol. 49 Valencia, X-2011 FLORA MONTIBERICA
FLORA MONTIBERICA Publicación periódica especializada en trabajos sobre la flora del Sistema Ibérico Vol. 49 Valencia, X-2011 FLORA MONTIBERICA Publicación independiente sobre temas relacionados con la flora y la vegetación (plantas vasculares) de la Península Ibérica, especialmente de la Cordillera Ibérica y tierras vecinas. Fundada en diciembre de 1995, se publican tres volúmenes al año con una periodicidad cuatrimestral. Editor y Redactor general: Gonzalo Mateo Sanz. Jardín Botánico. Universidad de Valencia. C/ Quart, 80. E-46008 Valencia. Redactores adjuntos: Javier Fabado Alós. Redactor página web y editor adjunto: José Luis Benito Alonso. Edición en Internet: www.floramontiberica.org Flora Montiberica.org es la primera revista de botánica en español que ofrece de forma gratuita todos sus contenidos a través de la red. Consejo editorial: Antoni Aguilella Palasí (Universidad de Valencia) Juan A. Alejandre Sáenz (Herbarium Alejandre, Vitoria) Vicente J. Arán Redó (Consejo Superior de Investigaciones Científicas, Madrid) Manuel Benito Crespo Villalba (Universidad de Alicante) José María de Jaime Lorén (Universidad Cardenal Herrera-CEU, Moncada) Emilio Laguna Lumbreras ((Departamento de Medio Ambiente. Gobierno de la Comunidad Valenciana) Pedro Montserrat Recoder (Consejo Superior de Investigaciones Científicas, Jaca). Edita: Flora Montiberica. Valencia (España). ISSN: 1138-5952 – ISSN edición internet: 1988-799X. Depósito Legal: V-5097-1995. Portada: Ophioglossum azoricum C. Presl, procedente de Sotorribas (Cuenca). Véase pág. 36 de este número. Flora Montiberica 49: 3-5 (X-2011). ISSN 1988-799X NUEVA LOCALIDAD VALENCIANA DE PUCCINELLIA HISPANICA JULIÀ & J. M. MONTSERRAT (POACEAE) P. Pablo FERRER GALLEGO1 & Roberto ROSELLÓ GIMENO2 1Servicio de Biodiversidad, Centro para la Investigación y la Experimentación Forestal de la Generalitat Valenciana (CIEF). -
CBD First National Report
FIRST NATIONAL REPORT OF THE REPUBLIC OF SERBIA TO THE UNITED NATIONS CONVENTION ON BIOLOGICAL DIVERSITY July 2010 ACRONYMS AND ABBREVIATIONS .................................................................................... 3 1. EXECUTIVE SUMMARY ........................................................................................... 4 2. INTRODUCTION ....................................................................................................... 5 2.1 Geographic Profile .......................................................................................... 5 2.2 Climate Profile ...................................................................................................... 5 2.3 Population Profile ................................................................................................. 7 2.4 Economic Profile .................................................................................................. 7 3 THE BIODIVERSITY OF SERBIA .............................................................................. 8 3.1 Overview......................................................................................................... 8 3.2 Ecosystem and Habitat Diversity .................................................................... 8 3.3 Species Diversity ............................................................................................ 9 3.4 Genetic Diversity ............................................................................................. 9 3.5 Protected Areas .............................................................................................10 -
Germination of Seeds of the Genus Iris Under Laboratory Conditions
Crimson Publishers Mini Review Wings to the Research Germination of Seeds of the Genus Iris Under Laboratory Conditions Tashpulatov Y Sh1*, Rasulova ZA2 and Turopova MI2 1Samarkand branch of Tashkent State Agrarian University, Uzbekistan ISSN: 2637-8078 2Samarkand State University, Uzbekistan Abstract Bulbous plants are settled in nature quite broadly and represent one of the largest groups plants on earth. Plants of the genus Iris L. can be used in gardening, for landscaping, flower bed decoration, including early in spring, it is also used to create floristic compositions and for distillation by certain dates. These are some of the most beautiful bulbous plants that adorn shade compositions that have high decorative qualities, in some regions of the country which is a rare species. The word “Iris” in translation from Greek means “rainbow”. A plant whose flower embodies the beautiful natural phenomenon-a rainbow. Plants of the genus Iris L. can multiply both by seeds and vegetative. The vegetative way is traditional for them. reproduction. Numerous techniques are being developed to accelerate the rate of vegetative reproduction. But, the possibilities of vegetative breeding is still limited. Features of seed reproduction These cultures are poorly studied and require further study. The coefficient of seed reproduction of plants is several times higher than the vegetative one. Also, with seed reproduction, it is possible to combine various signs and *Corresponding author: Tashpulatov in consequence of obtaining hybrids. Y Sh, Samarkand branch of Tashkent Keywords: Iris sibirica; Iris setosa; Iris pseudoacorus; Seed reproduction; Productivity State Agrarian University, Samarkand, Uzbekistan Introduction Submission: June 09, 2021 Iridaceae-are a fairly large family of about 1800 species belonging to 75-80 genera. -
Various Modes of Persistence at the Range Margins of Some Far Eastern Species
18 Living on the Edge: Various Modes of Persistence at the Range Margins of Some Far Eastern Species Elena Artyukova, Marina Kozyrenko, Olga Koren, Alla Kholina, Olga Nakonechnaya and Yuri Zhuravlev Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences Russia 1. Introduction Present-day patterns of plant distribution have been formed under the influence of various biotic and abiotic factors. Plant distribution reflects the habitat preferences of species and the outcome of their competition as well as the complex evolutionary processes resulting in the specificity of mating systems, the genetic structure of different species and other aspects of species biology. Together, these factors determine the current ranges and distributions of plant species. At the edge of a species' range, the significance of particular interactions with the environment becomes more pronounced. However, our understanding of this class of interactions is limited. There is debate about whether these interactions represent a distinct and ordered set of related phenomena or whether they are unrelated and without order. Different approaches to this problem are needed in different situations. Understanding the processes of microevolution in species at the edges of their ranges is of great interest, particularly in view of the continuing decline in worldwide biodiversity and ongoing and future climate changes. When the area of a plant's habitat is sufficient, most populations exist in a relatively stable condition, and changes in their genetic structure follow slow processes, such as gene flow and genetic drift. However, in populations growing at the edge of their range, the rates of genetic processes can change dramatically. -
Scanned Document
SIGN A Iris clarkei 'Dotted Line' No. 65 Fall 2000 Species Iris Group of North America Fall 2000 - Number 65 Officer and xecutive Pre idcnt .. ........... ...... .. ... Carla Lanka\ . I I I 18 169th A enue E. Renton. WA 98059 Vice Pre ident ......................... Will Plotn r. P.O. Box 250. Molalla. R 9703 8-0250 Treasur r ..... .. .......................... Janet Sack , 337 Acton 'treet. arlisl , MAO 1741 Recording Secretary ................ ....... Paul Martin. 710 Fir t treet, Gold n. CO 80403 Memb r hip ecretary ...... Rodne Barton. 3 Wolter treet. Hickory r k TX 75065 eed xchange ........ Jan t ack /Martin chafer. 37 A ton treet, Carli le MA01741 Robi n irector ... .. ... .... ... ...... Patricia Brook . I 02 Jefferson ane, Lad n C 29456 Slide ibrary ............ .. .... .. .. 1-l•lga ndrew. 11 Maple Avenue Sudbury, MA 01776 Check Ii l ......... .......... .. ... J an Witt, 16516 25'1' Street N , Shoreline WA 981 55 Sp cie Manual .. ....... ... ... .. .. ... ob Prie . 602 An tire R ad. High Ridge. MO 63049 Resear h Grants .. ... Or. Joh n Ta I r. W. niver it Hgt . Ori . , Flag raff. AZ 86001 Di spla ardens ... Penny Aguirre, 2J45 Decatur venue N.. olden Valley, MN 55427 Adopt-A- pecies ..................... Bob Pries. 602 An tire R ad Hi gh Ridge, MO 63049 A, ards .................... Barbara ch mieder. 566 Id Road to NAC, Concord MA 01742 Pa t Pr ident ........ ... Dr. Richard Ki omoto, 486 kiff treet, orth Ha n. T 06473 Ed itor . .. .. .. raham War • -7A Round ake RR#3. rmstrong, B VOE- I BO Director Jennifer He, in (200 I) Ha garth, le ton t.Mary. leobury M rtimer, Kiddem1inster, YI 40Q , ngland Ke in Vaughn (2001) P.O. -
Secondary Metabolites of the Choosen Genus Iris Species
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume LX 32 Number 8, 2012 SECONDARY METABOLITES OF THE CHOOSEN GENUS IRIS SPECIES P. Kaššák Received: September 13,2012 Abstract KAŠŠÁK, P.: Secondary metabolites of the choosen genus iris species. Acta univ. agric. et silvic. Mendel. Brun., 2012, LX, No. 8, pp. 269–280 Genus Iris contains more than 260 species which are mostly distributed across the North Hemisphere. Irises are mainly used as the ornamental plants, due to their colourful fl owers, or in the perfume industry, due to their violet like fragrance, but lot of iris species were also used in many part of the worlds as medicinal plants for healing of a wide spectre of diseases. Nowadays the botanical and biochemical research bring new knowledge about chemical compounds in roots, leaves and fl owers of the iris species, about their chemical content and possible medicinal usage. Due to this researches are Irises plants rich in content of the secondary metabolites. The most common secondary metabolites are fl avonoids and isofl avonoids. The second most common group of secondary metabolites are fl avones, quinones and xanthones. This review brings together results of the iris research in last few decades, putting together the information about the secondary metabolites research and chemical content of iris plants. Some clinical studies show positive results in usage of the chemical compounds obtained from various iris species in the treatment of cancer, or against the bacterial and viral infections. genus iris, secondary metabolites, fl avonoids, isofl avonoids, fl avones, medicinal plants, chemical compounds The genus Iris L. -
Protection of the Taiga–Steppe Ecosystems of the Western Shore of Lake Baikal
A.P. Sizykh, Int. J. of Design & Nature and Ecodynamics. Vol. 4, No. 1 (2009) 66–71 SHORT COMMUNICATION PROTECTION OF THE TAIGA–STEPPE ECOSYSTEMS OF THE WESTERN SHORE OF LAKE BAIKAL A.P. SIZYKH Siberian Institute of Plant Physiology and Biochemistry, Russian Academy of Sciences, Irkutsk, Russia. ABSTRACT By monitoring the spatial–coenotic changes of taiga–steppe communities and fl uctuations of climatic factors over the course of many years, it was possible to identify dynamic trends of the region’s taiga–steppe ecosys- tems’ formation. The layered character is most clearly pronounced, where meadow–steppe and forest–steppe plant species become predominant, irrespective of the type of habitat of the communities. The composition of taiga–steppe (transitional between forest and steppe) ecosystems reveals a spatial spreading of sinuosities of mosses characteristic for the light-coniferous and for the dark-coniferous taiga. A special trait of the spatial changes in the region’s vegetation structure should be mentioned, namely, a tendency toward a very active intrusion of wood species: pine and larch, into steppe communities thus forming curtains of uneven-age trees ranging from shoots to 25- to 30-year trees. Isolated (amidst steppes) trees as old as 40–50 years were reported previously. Processes of overall mesophytization and aforestation of steppes were observed throughout the western shore are of Lake Baikal. The genesis of the region’s vegetation over the course of Holocene and mod- ern tendencies of the communities at the background of the changes of temperature–hydrological regimes over the last several decades suggest the initial stage of formation here of taiga–steppe ecosystems characteristic only for this region of east Siberia. -
Plastid DNA Variation of the Endemic Species Oxytropis Glandulosa Turcz
Turkish Journal of Botany Turk J Bot (2018) 42: 38-50 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1706-11 Plastid DNA variation of the endemic species Oxytropis glandulosa Turcz. (Fabaceae) 1, 1 1 2 3 2 Alla KHOLINA *, Marina KOZYRENKO , Elena ARTYUKOVA , Denis SANDANOV , Inessa SELYUTINA , Daba CHIMITOV 1 Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia 2 Institute of General and Experimental Biology, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia 3 Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Received: 06.06.2017 Accepted/Published Online: 15.09.2017 Final Version: 11.01.2018 Abstract: Oxytropis glandulosa Turcz. (Fabaceae) is a rare perennial plant endemic to Buryatia (Russia). We sequenced three intergenic spacers (the psbA–trnH, trnL–trnF, and trnS–trnG) of chloroplast DNA (cpDNA) in specimens of four populations from two geographic regions (Barguzin and Yeravna depressions) within this species range. The levels of haplotype and nucleotide diversity varied in the range of 0.133–0.911 and 0.0002–0.0059, respectively. The highest values of these parameters are characteristic of populations located in the Barguzin depression. Variable sites detected within the intergenic spacers allowed the identification of eleven haplotypes; nine of them were found in the populations from the Barguzin depression and only two haplotypes were found in the populations from the Yeravna depression. No common haplotypes for all four populations were found. A high level of population differentiation (ΦST = 0.758, P < 0.0001) and the absence of evidence for isolation by distance were also found in O.