DNA Barcoding and Phylogenetic Assessment of Family Lamiaceae from Pakistan Based on Plastid and Nuclear Sequence Data

Total Page:16

File Type:pdf, Size:1020Kb

DNA Barcoding and Phylogenetic Assessment of Family Lamiaceae from Pakistan Based on Plastid and Nuclear Sequence Data DNA Barcoding and Phylogenetic Assessment of Family Lamiaceae from Pakistan based on Plastid and Nuclear Sequence Data. By Nadia Batool Zahra Department of Biotechnology Faculty of Biological Sciences Quaid-i-Azam University Islamabad 2017 DNA Barcoding and Phylogenetic Assessment of Family Lamiaceae from Pakistan based on Plastid and Nuclear Sequence Data. A thesis submitted in the partial fulfillment of requirements for the degree of Doctor of Philosophy In Plant Biotechnology By Nadia Batool Zahra Department of Biotechnology Faculty of Biological Sciences Quaid-i-Azam University Islamabad 2017 DEDICATED TO MY LOVING PARENTS For their support & prayers CONTENTS Acknowledgements i Index of Figures iii Index of Tables v List of Abbreviations vi Abstract vii Chapter 1 Introduction 1-31 1.1 Family Lamiaceae 1 1.2 Distribution 1 1.3 Medicinal and Economic Importance 2 1.4 Systematics 3 1.4.1 Subfamily Symphorematoideae Briq. 4 1.4.2 Subfamily Viticoideae Briq. 8 1.4.3 Subfamily Ajugoideae Kostel. 10 1.4.4 Subfamily Prostantheroideae Luerss. 12 1.4.5 Subfamily Scutellarioideae (Dumort.) Caruel 13 1.4.6 Subfamily Lamioideae Harley 14 1.4.7 Subfamily Nepetoideae (Dumort.) Luerss. 18 1.5 Molecular phylogenetics 20 1.5.1 Plastid and nuclear regions in angiosperm phylogeny 21 1.6 DNA Barcoding: A tool for standardization of herbal 22 medicinal products (HMPs) 23 1.6.1 What is a DNA Barcode? 1.6.2 Plastid and nuclear markers for DNA barcoding in plants 24 Maturase K gene (matK) 1.6.2.1 Ribulose-1,5-bisphosphate carboxylase/oxygenase large 25 subunit gene (rbcL) 1.6.2.2 trnH-psbA intergenic spacer 26 1.6.2.3 Internal transcribed spacer (ITS) 26 1.6.2.4 Challenges in DNA barcoding of medicinal plants/herbal 27 products 1.7 Research Objectives 31 Chapter 2 Materials & Methods 33-55 2.1 Section I: DNA Barcoding of herbal medicinal products 33 (HMPs) of Lamiaceae from Pakistan. 2.1.1 Sample collection from herbal markets/industry 33 2.1.2 DNA extraction from HMPs 33 2.1.2.1 Standard 2 X CTAB method 33 2.1.2.2 DNA isolation kit 38 2.1.3 Polymerase chain reaction (PCR) 38 2.1.3.1 PCR conditions for rbcL complete gene amplification 39 2.1.3.2 PCR conditions for matK partial gene amplification 39 2.1.3.2 PCR conditions for trnH-psbA spacer amplification 39 2.1.4 Purification of amplified products 40 2.1.5 DNA sequencing of barcoding loci 40 2.1.6 Nucleotide sequence data analysis 40 2.1.6.1 BLAST analysis 40 2.2 Section II: Phylogenetic utility of cpDNA rbcL, matK and 43 trnH-psbA regions 2.2.1 Sequence alignment and super matrix assembly 43 2.2.2 Data set construction 43 2.2.3 Phylogenetic analysis by RAxML method 43 2.3 Section III: Molecular phylogenetics of Lamiaceae based 44 on plastid (trnL-trnF) and nuclear (ITS) markers 2.3.1 Taxon sampling from wild and herbarium 44 2.3.2 DNA extraction from wild and herbarium specimen’s 44 2.3.2.1 2 X CTAB protocol 44 2.3.2.2 DNA extraction from herbarium samples 50 2.3.3 PCR 51 2.3.3.1 PCR parameters for trnL-trnF region 51 2.3.3.2 PCR parameters for ITS region 51 2.3.4 Purification of amplified products and DNA sequencing 51 2.3.5 Nucleotide sequence data analysis 54 2.3.5.1 Sequence alignment and super matrix assembly 54 2.3.5.2 Data set construction 54 2.3.6 Phylogenetic analysis 54 2.3.6.1 RAxML 55 2.3.6.2 Bayesian Inference (BI) 55 Chapter 3 Results 56-102 3.1 Section I: DNA Barcoding of herbal medicinal products 56 (HMPs) of Lamiaceae from Pakistan. 3.1.1 DNA extraction from HMPs and PCR of rbcL, matK and 56 trnH-psbA regions 3.1.2 Purification, sequencing and data analysis 56 3.1.3 BLAST analysis 56 3.1.3.1 rbcL gene analysis 58 3.1.3.2 matK nucleotide sequence analysis 62 3.1.3.3 trnH-psbA spacer region analysis 62 3.2 Section II: Evaluation of phylogenetic utility of cpDNA 65 rbcL, matK and trnH-psbA regions 3.3 Section III: Molecular phylogenetics of Lamiaceae based 79 on plastid (trnL-trnF) and nuclear (ITS) markers 3.3.1 DNA extraction and PCR 79 3.3.2 Purification, sequencing and data analysis 79 3.3.3 Phylogenetic analysis based on plastid trnL-trnF region 79 3.3.4 Phylogenetic analysis based on nuclear ITS region 92 Chapter 4 Discussion 103 4.1 Section I: DNA Barcoding of herbal medicinal products 103 (HMPs) of Lamiaceae from Pakistan. 4.1.1 Difficulty in DNA extraction and amplification of HMPs 103 4.1.2 Insufficient reference sequence data 104 4.1.3 Pros and cons of rbcL, matK and trnH-psbA regions 105 4.1.4 Challenges, improvements and regional recommendations for 105 DNA barcoding of HMPs 4.2 Section II: Evaluation of phylogenetic utility of cpDNA 109 rbcL, matK and trnH-psbA regions 4.3 Section III: Molecular phylogenetics of Lamiaceae based 110 on plastid (trnL-trnF) and nuclear (ITS) markers 4.3.1 Viticoideae 111 4.3.2 Scutellarioideae 112 4.3.3 Ajugoideae 112 4.3.4 Prostantheroideae 113 4.3.5 Symphorematoideae 113 4.3.6 Nepetoideae 114 4.3.7 Lamioideae 116 4.4 Conclusion 117 4.5 Future Recommendations 119 Publications 121 Literature Cited 122 ACKNOWLEDGEMENTS All praise to Allah Almighty, the most beneficent, the most merciful, who gave me strength and enabled me to undertake and execute this research task. I feel highly privileged in taking opportunity to express my deep sense of gratitude to my supervisor Dr. Zabta Shinwari, Professor, Department of Biotechnology. He was my greatest strength and my supreme mentor who not only supervised my work but also polished every aspect of my personality. I am thankful to him for his inspiration, reassurance and counseling from time to time and for his scholastic guidance and valuable suggestions throughout the study. I wish to express my heartfelt appreciation to Dr. Melanie Schori and Prof. Dr. Allan Showalter who were a source of guidance for completion of my research work at Environmental and Plant Biology Lab, Ohio University, Ohio, US. I would also like to pay my cordial thanks to Dr. Evgeny Mavrodiev, Prof. Dr. Douglas Soltis and Prof. Dr. Pamela Soltis for their cooperation, guidance, support and valuable advices they offered for completion of my research at Laboratory of Molecular Systematics & Evolutionary Genetics, University of Florida, Florida, US. It gives me great pleasure to express my gratitude to Higher Education Commission of Pakistan, for providing Indigenous and IRSIP scholarships. I would like to extend my deepest appreciation to those people, who helped me in one way or other in planning and executing this research work and writing up this thesis manuscript. I am obliged to Prof. Dr Wasim Ahmad, Dean, Biological Sciences and Dr. Muhammad Naeem, Chairman, Department of Biotechnology, Faculty of Biological Sciences, Quaid-i- Azam University, Islamabad for extending the research facilities of the department to accomplish this work. I am grateful to Faculty Department of Biotechnology, Quaid-i-Azam University, Islamabad for their help and support. Many thanks to Dr Muhammad Iqbal, Dr Mushtaq Ahmad, Dr Zafar Mahmood, Dr Anjum Parveen, Dr Tariq Mahmood, Dr Muhammad Ali and Mr Abdul Majid for extending their valuable advices and providing research material support. Sincere thanks to all my senior and junior lab fellows who were part of this journey at Molecular Sysytematics & Applied Ethnobotany Laboratory, Quaid-i- Azam University, Islamabad. My earnest gratitude to Dr Anwar Nasim for his continuous moral support and encouragement. Special thanks to Sohail Irshad and Muhammad Bilal Khan who happily extended their assistance at every instance. Solemn gratitude to my parents and my siblings who deserve special mention for their inseparable support and prayers. They have always been my source of strength and love. It wouldn’t have been this bearable if I didn’t have them in my life. Thank you for your unconditional support with my studies. Thank you for giving me a chance to prove and improve myself through all walks of my life. Nadia Zahra INDEX OF FIGURES Figure Title Page Fig 1.1 Clasification of family Lamiaceae proposed by Harley & colleagues 5 (2004). Fig 1.2 Flow chart representation of general transportation chain involved in 31 medicinal plants business in Pakistan. Fig 1.3 A double helix to show the relationship between classical taxonomy 32 and molecular database. Fig 2.1 Local herb store, Abpara, Islamabad, Pakistan. 34 Fig 2.2 Visit to herbal pharmaceutical industry, Pakistan. 34 Fig 2.3 Photograph showing the usual packaging of HMPs in plastic bags 35 purchased from Pansar stores. Fig 2.4 Field visit to Northern regions of Pakistan for collecting Lamiaceae 45 species. Fig 2.5 Showing locations of primers used to amplify different regions of 53 plastid (trnL-trnF) genome. Fig 2.6 Showing locations of primers used to amplify different regions of 53 nuclear (ITS) genome. Fig 3.1 Visualizations of extracted genomic DNA and amplified products of 57 DNA barcoding loci. Fig 3.2 Performance/Percentage success of DNA barcoding loci for 64 Lamiaceae. Fig 3.3 DNA barcodes of 32 HMPs belonging to Lamiaceae, collected from 64 local herbal stores and herbal pharmaceutical industry. Fig 3.4 The RAxML phylogenetic tree based on rbcL gene sequences of 66 Lamiaceae. Fig 3.5 The RAxML phylogenetic tree based on matK gene sequences of 70 Lamiaceae.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Impact Factor: 7.569
    Volume 10, Issue 8, August 2021 Impact Factor: 7.569 International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) | e-ISSN: 2319-8753, p-ISSN: 2347-6710| www.ijirset.com | Impact Factor: 7.569| || Volume 10, Issue 8, August 2021 || | DOI:10.15680/IJIRSET.2021.1008111 | Salvia aegyptiaca : A detailed Morphological and Phytochemical study Jyoti Singh Assistant Professor (Botany) , MLV Govt. College, Bhilwara, Rajasthan, India ABSTRACT: Egyptian Sage is a woody much branched herb, forming small clusters. Flowers are borne in simple racemes, sometimes branched; verticillasters distant, 2-6-flowered. Bracts and bracteoles present. Flower-stalks are about 2 mm long elongating to about 3.5 mm in fruit. Sepal-cup ovate to tubular bell-shaped, about 5 mm in flower and about 7 mm in fruit, with a rather dense indumentum of stalkless oil globules, capitate glandular and eglandular hairs; upper lip of 3 closely connivent small about 0.3 mm teeth, clearly concave in fruit; lower lip with 2 tapering-subulate about 3 mm teeth, longer than upper lip. Flowers are violet-blue, pale lavender or white with purple or lilac markings on lip, about 6-8 mm long; upper lip straight or reflexed, much shorter than lower; tube somewhat annulate. Stems are leafy, erect-rising up, about 10-25 cm tall, above and below with short or long hairs. Leaves are ovate-oblong to linear- elliptic, about 1.2-2.5 x 0.4-1.0 cm, rounded toothed to sawtoothed, rugulose, on both surfaces with short eglandular hairs, usually indistinctly stalked with longer hairs on leaf-stalk.
    [Show full text]
  • Plant Systematics Economic Botany and Ethnobotany
    CORE PAPER- VIII PLANT SYSTEMATICS ECONOMIC BOTANY AND ETHNOBOTANY UNIT - III Rubiaceae Systematic position Class-Dicotyledons Sub class -Gamopetalae Series –Inferae Order - Rubiales Family-Rubiaceae Distribution of Rubiaceae: It is commonly known as Madder or Coffee family. It includes 6000 species and 500 genera. In India it is represented by 551 species. The members of this family are distributed in tropics, sub-tropics and temperate regions. Vegetative characters Habit and Habitatat. Trees -Adina cordifolia Shrubs- Gardenia (mostly), some are twinners- Paederia Climbers -Uncaria Herbs -Gallium Epiphytic eg Hymenopogon parasiticus Helophytic, or mesophytic, or xerophytic, or hydrophytic (Limnosipanea). Majority are perennials a few annuals, cultrivated as well as wild Root –branched tap root Stem- aerial,erect or weak, cylindrical or angular herbaceous Gallium or woody ,armed with spines Randia dementorum ,glabrous,pubescent hairy or smooth Stephegyne, branched, dichasial cymein Gallium. Leaf - Cauline and ramal Leaves stipulate. Stipules interpetiolar (between the petioles , or intrapetiolar; between the petiole and axis .leafy Gallium divided Borreria hair like Pentas sometimes fused to form a sheath GardeniaPetiolate, subsessile or sessile Gallium Leaves opposite Cinchona or whorled Gallium simple; Lamina entire; Cinchona opposite decussate Ixora ), reticulate Floral characters: Inflorescence- Flowers aggregated in ‘inflorescences’, or solitary (less often); in cymes, or in panicles, Cinchona or in heads (rarely, e.g. Morindeae, Gardenia). The ultimate inflorescence units compound cyme MussaendaInflorescences with involucral bracts (when capitate), or without involucral bracts; Flowers -Bracteate Gardenia ebracteate Cinchona Bracts persistant –Hymenopogan Pedicellate,subsessile Gardenia sessile RandinBracteolate or ebracteolate, complete or incomplete actinomorphic,, Rarely Zygomorphic Randeletin bisexual unisexual Coprosma , epigynous regular; mostly 4 merous, or 5 merous; cyclic; tetracyclic.
    [Show full text]
  • Lamiales Newsletter
    LAMIALES NEWSLETTER LAMIALES Issue number 4 February 1996 ISSN 1358-2305 EDITORIAL CONTENTS R.M. Harley & A. Paton Editorial 1 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK The Lavender Bag 1 Welcome to the fourth Lamiales Universitaria, Coyoacan 04510, Newsletter. As usual, we still Mexico D.F. Mexico. Tel: Lamiaceae research in require articles for inclusion in the +5256224448. Fax: +525616 22 17. Hungary 1 next edition. If you would like to e-mail: [email protected] receive this or future Newsletters and T.P. Ramamoorthy, 412 Heart- Alien Salvia in Ethiopia 3 and are not already on our mailing wood Dr., Austin, TX 78745, USA. list, or wish to contribute an article, They are anxious to hear from any- Pollination ecology of please do not hesitate to contact us. one willing to help organise the con- Labiatae in Mediterranean 4 The editors’ e-mail addresses are: ference or who have ideas for sym- [email protected] or posium content. Studies on the genus Thymus 6 [email protected]. As reported in the last Newsletter the This edition of the Newsletter and Relationships of Subfamily Instituto de Quimica (UNAM, Mexi- the third edition (October 1994) will Pogostemonoideae 8 co City) have agreed to sponsor the shortly be available on the world Controversies over the next Lamiales conference. Due to wide web (http://www.rbgkew.org. Satureja complex 10 the current economic conditions in uk/science/lamiales). Mexico and to allow potential partici- This also gives a summary of what Obituary - Silvia Botta pants to plan ahead, it has been the Lamiales are and some of their de Miconi 11 decided to delay the conference until uses, details of Lamiales research at November 1998.
    [Show full text]
  • Dispersion of Vascular Plant in Mt. Huiyangsan, Korea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Korean Nature Vol. 3, No. 1 1-10, 2010 Dispersion of Vascular Plant in Mt. Huiyangsan, Korea Hyun-Tak Shin1, Sung-Tae Yoo2, Byung-Do Kim2, and Myung-Hoon YI3* 1Gyeongsangnam-do Forest Environment Research Institute, Jinju 660-871, Korea 2Daegu Arboretum 284 Daegok-Dong Dalse-Gu Daegu 704-310, Korea 3Department of Landscape Architecture, Graduate School, Yeungnam University, Gyeongsan 712-749, Korea Abstract: We surveyed that vascular plants can be classified into 90 families and 240 genus, 336 species, 69 variants, 22 forms, 3 subspecies, total 430 taxa. Dicotyledon plant is 80.9%, monocotyledon plant is 9.8%, Pteridophyta is 8.1%, Gymnosermae is 1.2% among the whole plant family. Rare and endangered plants are Crypsinus hastatus, Lilium distichum, Viola albida, Rhododendron micranthum, totalling four species. Endemic plants are Carex okamotoi, Salix koriyanagi for. koriyanagi, Clematis trichotoma, Thalictrum actaefolium var. brevistylum, Galium trachyspermum, Asperula lasiantha, Weigela subsessilis, Adenophora verticillata var. hirsuta, Aster koraiensis, Cirsium chanroenicum and Saussurea seoulensis total 11 taxa. Specialized plants are 20 classification for I class, 7 classifications for the II class, 7 classifications for the III class, 2 classification for the IV class, and 1 classification for the V class, total 84 taxa. Naturalized plants specified in this study are 10 types but Naturalization rate is not high compared to the area of BaekDu-DaeGan. This survey area is focused on the center of BaekDu- DaeGan, and it has been affected by excessive investigations and this area has been preserved as Buddhist temples' woods.
    [Show full text]
  • Seed Germination and Genetic Structure of Two Salvia Species In
    Seed germination and genetic structure of two Salvia species in response to environmental variables among phytogeographic regions in Jordan (Part I) and Phylogeny of the pan-tropical family Marantaceae (Part II). Dissertation Zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat) Vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg Von Herrn Mohammad Mufleh Al-Gharaibeh Geb. am: 18.08.1979 in: Irbid-Jordan Gutachter/in 1. Prof. Dr. Isabell Hensen 2. Prof. Dr. Martin Roeser 3. Prof. Dr. Regina Classen-Bockhof Halle (Saale), den 10.01.2017 Copyright notice Chapters 2 to 4 have been either published in or submitted to international journals or are in preparation for publication. Copyrights are with the authors. Just the publishers and authors have the right for publishing and using the presented material. Therefore, reprint of the presented material requires the publishers’ and authors’ permissions. “Four years ago I started this project as a PhD project, but it turned out to be a long battle to achieve victory and dreams. This dissertation is the culmination of this long process, where the definition of “Weekend” has been deleted from my dictionary. It cannot express the long days spent in analyzing sequences and data, battling shoulder to shoulder with my ex- computer (RIP), R-studio, BioEdite and Microsoft Words, the joy for the synthesis, the hope for good results and the sadness and tiredness with each attempt to add more taxa and analyses.” “At the end, no phrase can describe my happiness when I saw the whole dissertation is printed out.” CONTENTS | 4 Table of Contents Summary ..........................................................................................................................................
    [Show full text]
  • Medicinal Plants in the High Mountains of Northern Jordan
    Vol. 6(6), pp. 436-443, June 2014 DOI: 10.5897/IJBC2014.0713 Article Number: 28D56BF45309 ISSN 2141-243X International Journal of Biodiversity Copyright © 2014 Author(s) retain the copyright of this article and Conservation http://www.academicjournals.org/IJBC Full Length Research Paper Medicinal plants in the high mountains of northern Jordan Sawsan A. Oran and Dawud M. Al- Eisawi Department of Biological Sciences, Faculty of Sciences, University of Jordan, Amman, Jordan. Receive 10 April, 2014; Accepted 24 April, 2014 The status of medicinal plants in the high mountains of northern Jordan was evaluated. A total of 227 plant species belonging to 54 genera and 60 families were recorded. The survey is based on field trips conducted in the areas that include Salt, Jarash, Balka, Amman and Irbid governorates. Line transect method was used; collection of plant species was done and voucher specimens were deposited. A map for the target area was provided; the location of the study area grids in relation to their governorate was included. Key words: Medicinal plants, high mountains of northern Jordan, folk medicine. INTRODUCTION Human beings have always made use of their native cinal plant out of 670 flowering plant species identified in flora, not just as a source of nutrition, but also for fuel, the same area in Jordan. Recent studies are published medicines, clothing, dwelling and chemical production. on the status of medicinal plants that are used fofolk Traditional knowledge of plants and their properties has medicine by the local societies (Oran, 2014). always been transmitted from generation to generation Medicinal plants in Jordan represent 20% of the total through the natural course of everyday life (Kargıoğlu et flora (Oran et al., 1998).
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide
    National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.
    [Show full text]
  • J.F. Veldkamp (Continued from Page 104)
    BIBLIOGRAPHY: BRYOPHYTES 165 XVI. Bibliography J.F. Veldkamp (continued from page 104) * Books have been marked with an asterisk. BRYOPHYTES AKIYAMA, H. 1988. Studies onLeucodon (Leucodontaceae, Musci)and related genera in East Asia III. Notes on the systematic position of Pterogonium. Acta Phytotax. Geo- bot. 39: 73-82, 4 fig. — To Isobryales near Anomodon. ASAKAWA, Y. 1988. Chemicalevolution of mono- and sesquiterpenoids ofliverworts. J. Hattori Bot. Lab. 64: 97-108, 16 fig. BISCHLER, H. 1989. MarchantiaL.: subg. Chlamidium (Nees) Bischl. sect. Papillatae Bischl. sect. nov. en Asie et en Ocianie. Cryptog., Bryol. Lichenol. 10: 61-79, 9 fig, 3 tab. (In French, Engl. summ.). — Marchantia emarginata group, 2 species, 5 sub- species. - — 1988. Marchantiapaleacea Bertol. Karyotype analysis. Beih. Nova Hedw. 90 (1988) 95-100, 2 fig, 1 tab. — 1988. Relationships in the order Marchantiales (Hepaticae). J. Hattori Bot. Lab. 64: 47-57, 3 tab. BUCK, W.R. 1988. Another view ofthe familial delimitationofthe Hookeriales. J. Hattori Bot. Lab. 64: 29-36,1 fig. — 5 families; key; descriptions. CAP, T. & C. GAO. 1988. Studies ofChinese bryophytes. (2). Trematodon Michx. (Mus- ci, Dicranaceae). J. Hattori Bot. Lab. 65: 323-334, 6 fig, 1 tab. — 2 species, 1 Male- sian; descriptions. CATCHESIDE, D.G. 1988. The mosses of the Northern territory, Australia. J. Adelaide Bot. Gard. 11: 1-17, 4 — 95 54 new records, fig. species, keys to some genera. CHANDRA, V., et al. 1987. Calobryales: Distribution andphytogeographical discussion. Geophytology 17: 227-232, 1 map. * EDDY, A. 1988. A handbook ofMalesian mosses. 1. Sphagnales to Dicranales. iii, 204 165 British London. ISBN 0-567-01038-7.
    [Show full text]
  • Does the Arcto-Tertiary Biogeographic Hypothesis Explain the Disjunct Distribution of Northern Hemisphere Herbaceous Plants? the Case of Meehania (Lamiaceae)
    RESEARCH ARTICLE Does the Arcto-Tertiary Biogeographic Hypothesis Explain the Disjunct Distribution of Northern Hemisphere Herbaceous Plants? The Case of Meehania (Lamiaceae) Tao Deng1,2,3, Ze-Long Nie4, Bryan T. Drew5, Sergei Volis2, Changkyun Kim2, Chun-Lei Xiang2, Jian-Wen Zhang2, Yue-Hua Wang1*, Hang Sun2* a11111 1 School of Life Science, Yunnan University, Kunming, Yunnan, China, 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, Yunnan, China, 3 University of Chinese Academy of Sciences, Beijing, China, 4 Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China, 5 Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, United States of America * [email protected] (HS); [email protected] (YHW) OPEN ACCESS Citation: Deng T, Nie Z-L, Drew BT, Volis S, Kim C, Abstract Xiang C-L, et al. (2015) Does the Arcto-Tertiary Biogeographic Hypothesis Explain the Disjunct Despite considerable progress, many details regarding the evolution of the Arcto-Tertiary Distribution of Northern Hemisphere Herbaceous flora, including the timing, direction, and relative importance of migration routes in the evolu- Meehania Plants? The Case of (Lamiaceae). PLoS tion of woody and herbaceous taxa of the Northern Hemisphere, remain poorly understood. ONE 10(2): e0117171. doi:10.1371/journal. pone.0117171 Meehania (Lamiaceae) comprises seven species and five subspecies of annual or perenni- al herbs, and is one of the few Lamiaceae genera known to have an exclusively disjunct dis- Academic Editor: Qi Wang, Institute of Botany, CHINA tribution between eastern Asia and eastern North America.
    [Show full text]
  • Flora of North America
    Flora of North America Volume 25, Number 1 Newsletter January – June 2011 PRESIDENT’S REPORT Flora of North America Association: Deadlines Are Dead Serious Luc Brouillet, FNAA president roducing any volume of the Flora of North America more precise idea of the progress of the flora because very Pseries requires dedication from a large number of large genera tend to arrive late. As stated above, these are individuals over a long period of time. But, production the volumes nearing completion. What is the overall state cannot start before manuscripts are received. This state- of volume production for the remaining ten volumes? ment underscores the crucial role played by authors in The percentage of manuscripts received (and in the FNA project. Authors have many commitments and regional review) varies from 1 to 37%, for an overall often will put off writing their treatments, precisely average of 16.5%. This is both impressive and a call to because of the apparently remote deadlines (or through greater efforts. Indeed, if we want to finish the Flora a disbelief in deadlines). Yet deadlines are dead serious within a reasonable timeframe (and we must), manuscript to FNA: editors, reviewers, technical editors, and artists flow from authors must increase, and those authors who all depend on manuscript delivery. have not yet started to work on their treatments must The FNA project is more than half way to completion. do so now. No more procrastination: deadlines are real, If we exclude the three volumes (6, 9, and 28) currently in for us at the project as much as for you authors.
    [Show full text]
  • SCHREB. Subsp. CHAMAEPITYS
    Arch. Biol. Sci., Belgrade, 67(4), 1195-1202, 2015 DOI:10.2298/ABS150225095J SECONDARY METABOLITE CONTENT AND IN VITRO BIOLOGICAL EFFECTS OF AJUGA CHAMAEPITYS (L.) SCHREB. SUbsP. CHAMAEPITYS Dragana Z. Jakovljević*, Sava M. Vasić, Milan S. Stanković, Ljiljana R. Čomić and Marina D. Topuzović Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, Republic of Serbia *Corresponding author: [email protected] Abstract: The antioxidant and antimicrobial activities and contents of total phenolics and flavonoids of Ajuga chamaepitys (L.) Schreb. subsp. chamaepitys (Lamiaceae) were investigated. Five different extracts from aboveground flowering plant parts were obtained by extraction with water, methanol, acetone, ethyl acetate and petroleum ether. The total phenolic con- tent was determined spectrophotometrically using the Folin-Ciocalteu reagent and expressed as the gallic acid equivalent (mg GA/g of extract). The highest value was obtained in the ethyl acetate extract (57.02 mg GA/g). The concentration of flavonoids, determined using a spectrophotometric method with aluminum chloride and expressed as the rutin equivalent (mg RU/g of extract), was highest in the ethyl acetate extract (91.76 mg RU/g). The antioxidant activity was determined in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) reagent. The highest antioxidant activity was detected in the acetone extract (SC50 value = 330.52 µg/mL). In vitro antimicrobial activities were determined using a microdilution method, and the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) were determined. The most effective antimicrobial activity against Bacillus cereus was demonstrated by the acetone extract, with MIC and MMC values of 1.25 mg/mL.
    [Show full text]