Cordilleran 12–14 May Pasadena, California, USA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Bibliography of Klamath Mountains Geology, California and Oregon
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A bibliography of Klamath Mountains geology, California and Oregon, listing authors from Aalto to Zucca for the years 1849 to mid-1995 Compiled by William P. Irwin Menlo Park, California Open-File Report 95-558 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. PREFACE This bibliography of Klamath Mountains geology was begun, although not in a systematic or comprehensive way, when, in 1953, I was assigned the task of preparing a report on the geology and mineral resources of the drainage basins of the Trinity, Klamath, and Eel Rivers in northwestern California. During the following 40 or more years, I maintained an active interest in the Klamath Mountains region and continued to collect bibliographic references to the various reports and maps of Klamath geology that came to my attention. When I retired in 1989 and became a Geologist Emeritus with the Geological Survey, I had a large amount of bibliographic material in my files. Believing that a comprehensive bibliography of a region is a valuable research tool, I have expended substantial effort to make this bibliography of the Klamath Mountains as complete as is reasonably feasible. My aim was to include all published reports and maps that pertain primarily to the Klamath Mountains, as well as all pertinent doctoral and master's theses. -
Bayesian Probabilistic Reconstruction of Metamorphic P–T Paths Using Inclusion Geothermobarometry
Journal of Mineralogical and Petrological Sciences, Volume 113, page 82–95, 2018 Bayesian probabilistic reconstruction of metamorphic P–T paths using inclusion geothermobarometry † † Tatsu KUWATANI*, , Kenji NAGATA**, , Kenta YOSHIDA*, Masato OKADA*** and Mitsuhiro TORIUMI* *Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokosuka 237–0061, Japan **Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135–0064, Japan ***Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277–8561, Japan †PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332–0012, Japan Geothermometry and geobarometry are used to study the equilibration of mineral inclusions and their zoned host minerals, which provide information on the P–T conditions of inclusions at the time of their entrapment. However, reconstructing detailed P–T paths remains difficult, owing to the sparsity of inclusions suitable for geothermometry and geobarometry. We developed a stochastic inversion method for reconstructing precise P–T paths from chemically zoned structures and inclusions using the Markov random field (MRF) model, a type of Bayesian stochastic method often used in image restoration. As baseline information for P–T path inversion, we introduce the concepts of pressure and temperature continuity during mineral growth into the MRF model. To evaluate the proposed model, it was applied to a P–T inversion problem using the garnet–biotite geothermom- eter and the garnet–Al2SiO5–plagioclase–quartz geobarometer for mineral compositions from published datasets of host garnets and mineral inclusions in pelitic schist. Our method successfully reconstructed the P–T path, even after removing a large part of the inclusion dataset. -
Valid Garnet–Biotite (GB) Geothermometry and Garnet–Aluminum Silicate–Plagioclase–Quartz (GASP) Geobarometry in Metapelitic Rocksb
Lithos 89 (2006) 1–23 www.elsevier.com/locate/lithos Valid garnet–biotite (GB) geothermometry and garnet–aluminum silicate–plagioclase–quartz (GASP) geobarometry in metapelitic rocksB Chun-Ming Wu a,*, Ben-He Cheng b a Laboratory of Computational Geodynamics, The Graduate School, Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049, China b Sinopec International Petroleum Exploration and Production Corporation, Beijing 100083, China Received 5 September 2004; accepted 2 September 2005 Available online 28 November 2005 Abstract At present there are many calibrations of both the garnet–biotite (GB) thermometer and the garnet–aluminum silicate– plagioclase–quartz (GASP) barometer that may confuse geologists in choosing a reliable thermometer and/or barometer. To test the accuracy of the GB thermometers we have applied the various GB thermometers to reproduce the experimental data and data from natural metapelitic rocks of various prograde sequences, inverted metamorphic zones and thermal contact aureoles. We have concluded that the four GB thermometers (Perchuk, L.L., Lavrent’eva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite–garnet–biotite. In: Saxena, S.K. (ed.) Kinetics and equilibrium in mineral reactions. Springer- Verlag New York, Berlin, Heidelberg. pp. 199–239.; Kleemann, U., Reinhardt, J., 1994. Garnet–biotite thermometry revised: the effect of AlVI and Ti in biotite. European Journal of Mineralogy 6, 925–941.; Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet–biotite geothermometer. American Mineralogist 85, 881–892., Model 6AV; Kaneko, Y., Miyano, T., 2004. Recalibration of mutually consistent garnet–biotite and garnet–cordierite geothermometers. Lithos 73, 255–269. -
Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania
Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania Dissertation zur Erlangung des Doktorgrades an der Mathematisch-Naturwissenschftiliches Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Emmanuel Owden Kazimoto Kiel 2014 Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania Dissertation zur Erlangung des Doktorgrades an der Mathematisch-Naturwissenschftiliches Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Emmanuel Owden Kazimoto Kiel 2014 Gedruckt mit der Unterstützung des Deutschen Akademischen Austauschdienstes Referent: Prof. Dr. Volker Schenk Korrereferentin: Prof. Dr. Astrid Holzheid Tad der mündlichen Prüfung: 1-7-2014 Zum Druck genehmigt Der Dekan Vorwort Die vorliegende Arbeit wurde als monographische Dissertation verfasst, jedoch ist in den drei Kapiteln jeweils eine eigenständige Einleitung und Diskussion vorhanden. Für die einzelnen Kapitel wurde bewusst ein unabhängiger Aufbau gewählt, da diese losgelöst voneinander in internationalen Fachzeitschriften publiziert werden sollen. Daher finden sich in jedem Kapitel eine Einleitung, Diskussion und Literaturverzeichnis wieder, auch die Länge und etwaige Formatierungen sind in Hinblick auf die jeweiligen Vorgaben der Fachzeitschriften bewusst gewählt. Der Leser sei darauf hingewiesen, dass es durch den gewählten Aufbau zu Wiederholungen kommen kann und möge diesen Sachverhalt bei der Lektüre berücksichtigen. Kiel, June 2014 Emmanuel Owden Kazimoto Acknowledgements I would like to thank the German Academic Exchange Programme (DAAD) and The Ministry of Education and Vocational Training of Tanzania (MOEVT) through the Tanzania Commission for Universities (TCU) for providing funds that facilitated my stay in Germany and enabled me to attain my PhD degree. I am also grateful to the University of Dar es Salaam for the financial support of my fieldworks through the Sida Earth Science Project. -
Segmentation of the Laramide Slab—Evidence from the Southern
Segmentation of the Laramide SlabÐevidence from the southern Sierra Nevada region Jason Saleeby² Division of Geological and Planetary Sciences, California Institute of Technology, M.S. 100-23, Pasadena, California 91125, USA ABSTRACT ®ned by plate edge relations and the cor- 1992). A commonly cited plate tectonic mech- responding trajectory of Farallon±North anism for the orogeny is intensi®ed traction During the latest Cretaceous-early Paleo- American relative plate motions when and tectonic erosion of the subcontinental gene Laramide orogeny, the lithosphere be- viewed on a pre-Neogene palinspastic base. mantle lithosphere due to ¯attening of the sub- neath the southernmost Sierra Nevada The plate interior is suggested to have been ducted slab (Coney and Reynolds, 1977; batholith and the adjacent Mojave Desert deformed ®rst by end loading as the shal- Dickinson and Snyder, 1978; Bird, 1988). The region batholith was sheared off and dis- low slab segment initially descended be- response of the craton was deformation and placed deeper into the mantle. The litho- neath the plate edge, and then by greater uplift along a north-northeast±trending corri- sphere beneath the greater Sierra Nevada basal traction components as the shallow dor extending from southwest Arizona batholith to the north was left intact until segment progressed beneath the cratonic through Wyoming (Fig. 1). This intracratonal mid-Miocene time, when fragments of it region. The subcontinental mantle litho- deformation zone is for the most part inboard were entrained as volcanic xenoliths. The sphere beneath the cratonic deformation of the Cordilleran (Sevier) foreland fold-thrust Laramide slab was evidently segmented zone remained intact through Laramide belt, thereby calling for special circumstances into a shallow ¯at segment to the south and time. -
Petrology and Geothermobarometry of Grt-Cpx and Mg-Al-Rich
Petrology and Geothermobarometry of Grt-Cpx and Mg-Al- rich Rocks from the Gondwana Suture in Southern India: Implications for High-pressure and Ultrahigh-temperature Metamorphism Hisako Shimizu*, Toshiaki Tsunogae Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan, [email protected] and M. Santosh Faculty of Science, Kochi University, Akebono-cho 2-5-1, Kochi 780-8520, Japan Introduction The Palghat-Cauvery Shear/Suture Zone (PCSZ) in southern India represents a system of dominantly E-W trending shear zones that separate the Archean Dharwar Craton to the north and Neoproterozoic granulite blocks to the south. Available geochronological data on high- grade metamorphic rocks from this region have confirmed the widespread effect of a ca. 550- 530 Ma thermal event related to the collisional amalgamation of the Gondwana supercontinent (e.g., Collins et al., 2007a, Santosh et al., 2009). Recent petrological investigations of high- grade metamorphic rocks of the PCSZ around Namakkal district identified prograde high- pressure (HP, P >12 kbar) metamorphism and peak ultrahigh-temperature (UHT) metamorphic history of this region (e.g., Shimpo et al., 2006; Nishimiya et al., 2010), which has been correlated to deep subduction prior to the collision and exhumation of the orogen during Neoproterozoic to Cambrian (Santosh et al., 2009). The PCSZ is therefore regarded as the trace of the Gondwana suture zone that continues westwards to the Betsimisaraka suture in Madagascar (Collins and Windley, 2002), and eastwards into Sri Lanka and probably into Antarctica. However, P-T paths related to tectonic settings of this region are still under debate as both clockwise (e.g., Shimpo et al., 2006) and counterclockwise (e.g., Sajeev et al., 2009) P- T paths have been reported from this region. -
Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5. -
DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Review of the Great Valley Sequence, Eastern Diablo Range and Northern San
DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Review of the Great Valley sequence, eastern Diablo Range and northern San Joaquin Valley, central California by J. Alan Bartow1 and TorH.Nilsen2 Open-File Report 90-226 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1990 , Menlo Park, California 2Applied Earth Technologies, Inc, Redwood City, California ABSTRACT The Great Valley sequence of the eastern Diablo Range and northern San Joaquin Valley consists of a thick accumulation of marine and nonmarine clastic rocks of Jurassic to early Paleocene age deposited in a forearc basin that was situated between the Sierran magmatic arc to the east and the Franciscan subduction complex to the west. In the western part of the basin, the sequence rests conformably on the Jurassic Coast Range Ophiolite or is faulted against the structurally underlying Franciscan Complex. Beneath the eastern San Joaquin Valley, the sequence unconformably onlaps igneous and metamorphic rocks of the Sierran magmatic arc. The sequence generally thickens westward to as much as 8-9 km in the Diablo Range, where it is unconformably overlain by late Paleocene and younger strata. The stratigraphy of the Great Valley sequence has been the subject of much work, but problems, particularly nomenclatural, remain. Lithostratigraphic subdivisions of the sequence have not gained widespread acceptance because of the lenticularity of most sandstone bodies, abrupt fades changes in subsurface and outcrops, and the lack of detailed subsurface information from closely spaced or deep wells. -
Field Report (PDF)
Field Forum Report Sierra Nevada, California • 1–8 SEptEMBER 2012 Each evening participants of the field forum led follow-up group Formation of the Sierra Nevada discussions. These discussions were enriched by a number of posters presented by the participants. Two students, Laura Waters Batholith: Magmatic and Tectonic at the University of Michigan, and Jesse Hahm from the University Processes and Their Tempos of Wyoming, received Best Student Poster awards, which earned them each a trip to the GSA Annual Meeting in Charlotte, North Carolina, USA. Plans are underway to publish the field guide as a GSA Special Paper following this field forum. ConvENErs Scott R. Paterson, Department of Earth Sciences, University of DAILY ACTIVITIES Southern California, Los Angeles, California 90089-0740, USA, Day 1 was organized by Keith Putirka and Scott Paterson, who [email protected] kicked off the field forum by presenting outcrops of the Jurassic, 28° tilted, upper crustal Guadalupe Igneous Complex and nearby Jade Star Lackey, Pomona College, Claremont, California 91711, USA Hornitos pluton intruding oceanic host rocks of the western Vali Memeti, Department of Earth Sciences, University of foothills of the Sierra Nevada. The Hornitos consists of vertical Southern California, Los Angeles, California 90089-0740, USA mafic and felsic dikes, which appear to feed compositionally equivalent magmas into the overlying Guadalupe Igneous Robert B. Miller and Jonathan S. Miller, Department of Geology, Complex (GIC). The GIC is in turn composed of moderately San José State University, San José, California 95192-0102, USA dipping sheets of gabbro and meladiorite at its base, which are overlain by a mingled granite and gabbro zone. -
Temporal and Spatial Trends of Late Cretaceous-Early Tertiary Underplating of Pelona and Related Schist Beneath Southern California and Southwestern Arizona
spe374-14 page 1 of 26 Geological Society of America Special Paper 374 2003 Temporal and spatial trends of Late Cretaceous-early Tertiary underplating of Pelona and related schist beneath southern California and southwestern Arizona M. Grove Department of Earth and Space Sciences, University of California, 595 Charles Young Drive E, Los Angeles, California 90095-1567, USA Carl E. Jacobson Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA Andrew P. Barth Department of Geology, Indiana University–Purdue University, Indianapolis, Indiana 46202-5132, USA Ana Vucic Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA ABSTRACT The Pelona, Orocopia, and Rand Schists and the schists of Portal Ridge and Sierra de Salinas constitute a high–pressure-temperature terrane that was accreted beneath North American basement in Late Cretaceous–earliest Tertiary time. The schists crop out in a belt extending from the southern Coast Ranges through the Mojave Desert, central Transverse Ranges, southeastern California, and southwest- ern Arizona. Ion microprobe U-Pb results from 850 detrital zircons from 40 meta- graywackes demonstrates a Late Cretaceous to earliest Tertiary depositional age for the sedimentary part of the schist’s protolith. About 40% of the 206Pb/238U spot ages are Late Cretaceous. The youngest detrital zircon ages and post-metamorphic mica 40Ar/39Ar cooling ages bracket when the schist’s graywacke protolith was eroded from its source region, deposited, underthrust, accreted, and metamorphosed. This interval averages 13 ± 10 m.y. but locally is too short (<~3 m.y.) to be resolved with our methods. -
The Late Cenozoic Tectono-Sedimentary
Second ISAG, Oxford (UK),21 -231911993 95 Adrian J. HARTLEY(l1 and ElizabethJ. JBLLEY@) (1) Department of Geology and Petroleurn Geology, Meston Building, King's College, University of Aberdeen, AberdeenAB9 2UE, U.K. (2) BP Exploration, Aberdeen. REOUME: El estudio dela evolucion sedimentologia, geomorfolagiay tectonica del Mioceno-Holoceno de la costa norte de Chile entre21O30' y 24% ha reveladola siguiente seqeuncia de eventos: 1) Subsidenciay sdirnentatcion del mid Miocenoal Pleistoceno, 2) Lewantamiento y formacion de terrazas marinas controladas por ascensos eustaticos interglaciones, ascensos tectonicoy ascenso controlado por fallarniento asociadoa la domacion regional del margen de subduccion. KEY WORDS: northern Chile, Late Cenozoic, marine terraces, tectonics INTRODUCTION The Late Miocene to Recent uplift of the Central Andean Pacific margin of South America is recordedby the development ofa number of marine terraces and exposed shallow marine and continental sediments of Miocene te Recent age. However, whilst terrace developrnent has been recognised for sorne lime, correlation along the Pacific margin has proved extrernely difficult. Correlation difficulties have arisen because of variations in the ages, nurnbers and heights of terraces dueto a combination of fluctuations in sea-level resulting from the Quaternary glaciation superimposed on areas of differential uplift along the Pacific margin. Herewe illustrate how a detailed study of Miocene to Recent sedimentation along the north Chilean coastal masgin can help to constrain -
Production and Loss of Highdensity Batholithic Root, Southern Sierra Nevada, California
TECTONICS, VOL. 22, NO. 6, 1064, doi:10.1029/2002TC001374, 2003 Production and loss of high-density batholithic root, southern Sierra Nevada, California Jason Saleeby Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA Mihai Ducea Department of Geosciences, University of Arizona, Tucson, Arizona, USA Diane Clemens-Knott Department of Geological Sciences, California State University, Fullerton, California, USA Received 20 February 2002; revised 21 March 2003; accepted 1 July 2003; published 18 November 2003. [1] Eclogites are commonly believed to be highly principal source for the batholith was a polygenetic susceptible to delamination and sinking into the mantle hydrous mafic to intermediate composition lower from lower crustal metamorphic environments. crust dominated by mantle wedge-derived mafic We discuss the production of a specific class of intrusions. Genesis of the composite batholith over eclogitic rocks that formed in conjunction with an 50 m.y. time interval entailed the complete the production of the Sierra Nevada batholith. These reconstitution of the Sierran lithosphere. Sierra high-density eclogitic rocks, however, formed by Nevada batholith magmatism ended by 80 Ma in crystal-liquid equilibria and thus contrast sharply conjunction with the onset of the Laramide orogeny, in their petrogenesis and environment of formation and subsequently, its underlying mantle lithosphere from eclogite facies metamorphic rocks. Experimental cooled conductively. In the southernmost Sierra- studies show that when hydrous mafic to intermediate northern Mojave Desert region the subbatholith composition assemblages are melted in excess of mantle lithosphere was mechanically delaminated 1 GPa, the derivative liquids are typical of by a shallow segment of the Laramide slab and Cordilleran-type batholith granitoids, and garnet + was replaced by underthrust subduction accretion clinopyroxene, which is an eclogitic mineralogy, assemblages.