A Bibliography of Klamath Mountains Geology, California and Oregon

Total Page:16

File Type:pdf, Size:1020Kb

A Bibliography of Klamath Mountains Geology, California and Oregon U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A bibliography of Klamath Mountains geology, California and Oregon, listing authors from Aalto to Zucca for the years 1849 to mid-1995 Compiled by William P. Irwin Menlo Park, California Open-File Report 95-558 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. PREFACE This bibliography of Klamath Mountains geology was begun, although not in a systematic or comprehensive way, when, in 1953, I was assigned the task of preparing a report on the geology and mineral resources of the drainage basins of the Trinity, Klamath, and Eel Rivers in northwestern California. During the following 40 or more years, I maintained an active interest in the Klamath Mountains region and continued to collect bibliographic references to the various reports and maps of Klamath geology that came to my attention. When I retired in 1989 and became a Geologist Emeritus with the Geological Survey, I had a large amount of bibliographic material in my files. Believing that a comprehensive bibliography of a region is a valuable research tool, I have expended substantial effort to make this bibliography of the Klamath Mountains as complete as is reasonably feasible. My aim was to include all published reports and maps that pertain primarily to the Klamath Mountains, as well as all pertinent doctoral and master's theses. In addition, I included reports in which the Klamath Mountains are of significance but not the primary focus; these latter kinds are mostly reports that correlate the Klamath terranes with those of other provinces, that compare the genesis of Klamath rocks with those elsewhere, or that include the Klamath Mountains in a continental framework. Reports describing the geology of the overlap sequences such as the Great Valley sequence, Hornbrook Formation, and Tertiary sediments and volcanics are included where those rocks lie within the limits of the Klamath Mountains province, but are only selectively included where the overlap sequences are mainly peripheral to the province. The alphabetical part of the bibliography consists of approximately 1700 entries. The list of primary references probably is virtually complete through 1994 and includes some 1995 references. The earliest reference is to James Dwight Dana in 1849. In order to restrict the size of the topical part of the bibliography to reasonable limits, each reference is listed under only one subject although many references may be applicable to two or more subjects. Titles in the topical section are abbreviated to conserve space and still retain identity. The bibliography was compiled from a variety of sources. Many of the references have not been checked against the original publications for accuracy. Caveat emptor! I would appreciate being informed of any errors or ommissions in order that a corrected and updated version of the bibliography may be prepared. I thank Nancy Blair for assistance in verifying some of the references, and thank Mary Donate and Robert Brown for helpful suggestions regarding the topical part of the bibliography. William P. Irwin Menlo Park, California June 27, 1995 CONTENTS Page PREFACE........................................................ 2 CONTENTS ....................................................... 3 ALPHABETICAL LIST OF REFERENCES ................................ 5 TOPICAL LIST OF REFERENCES ................................... 108 HISTORY OF REGION ........................................ 108 PHYSIOGRAPHY............................................. .108 FLOODS.................................................... 108 GLACIATION. ............................................... 109 CAVES..................................................... 109 MINERAL SPRINGS........................................... 110 WATERSHED AND GROUNDWATER INVESTIGATIONS..................110 WILDERNESS, ROADLESS, AND RARE II AREAS...................110 ROAD LOGS, FIELD GUIDES, AND RAFT TRIPS...................111 GEOLOGIC MAPS---Regional.................................. 112 ---Quadrangle................................ 112 ---Thesis.................................... 113 AREAL GEOLOGY............................................. 114 STRUCTURE- --Faults. .................................. .115 ---Other, and general........................ 116 METAMORPHISM Blueschist................................ 116 - -Condrey Mtn............................... 117 -Other.................................... .117 PLUTONS Ashland................................... 118 ---Caribou Mtn...............................118 ---Castle Crags.............................. 119 ---Gibson Peak...............................119 ---Greyback................................. .119 -Pit River.................................119 ---Russian Peak.............................. 119 ---Wooley Creek..............................119 ---English Peak..............................119 ---Other plutons............................. 120 ---General features.......................... 120 OPHIOLITES Josephine ................................. 121 ---North Fork................................122 -Preston Peak.............................. 122 ---Tom Martin................................ 122 ---Trinity................................... 122 ---Others, and general....................... 123 STRATIGRAPHY.............................................. 124 OVERLAP STRATA--Cretaceous ................................ 127 ---Tertiary..................................128 PALEONTOLOGY Conodonts................................. 128 -Corals.................................... 128 ---Fusulinids................................ 129 ---Radiolarians.............................. 129 -Shelly fossils............................ 130 ---Vertebrates............................... 130 ---Other, and general........................ 130 TECTONICS AND REGIONAL CORRELATION. ....................... 131 GEOCHEMISTRY AND PETROLOGY OF ARC AND OTHER ROCKS. ....... .136 GEOPHYSICAL RESEARCH--Paleomagnetic....................... 137 ---Magnetic..................................138 ---Radiometric and magnetic..................138 ---Gravity................................... 139 ---Seismic refraction........................ 139 ---Seismicity................................ 139 ISOTOPIC DATING. .......................................... 139 MINERAL DEPOSITS--METALLIC. .............................. .141 ---Chromium.................................. 141 ---Copper....................................141 -Gold...................................... 142 ---Iron..................................... .144 ---Lead-zinc................................. 144 ---Manganese................................. 144 ---Massive sulfide...........................144 ---Mercury................................... 146 - -Nickel.................................... 146 - Platinum.................................. 147 -Silver....................................148 ---Other, and general........................ 148 ---County and district reports ............... 148 MINERAL DEPOSITS NONMETALLIC............................. 149 ---Asbestos.................................. 149 -Coal...................................... 150 ---Diamonds.................................. 150 ---Limestone................................. 150 -Other.....................................150 SPECIFIC MINERALS ......................................... 150 ENVIRONMENTAL AND ENGINEERING. ............................ 150 MISCELLANEOUS ............................................ 151 ALPHABETICAL LIST OF REFERENCES Aalto, K.R., 1988, Sedimentology of the Montgomery Creek Formation, Shasta County, California: California Geology, v. 41, no. 11, p. 254-260. ---1989, Preface, _iri Aalto, K.R., and Harper, G.D., leaders, Geologic evolution of the northernmost Coast Ranges and western Klamath Mountains, California: 28th International Geological Congress, Field Trip Guidebook T308, p. v-vi, American Geophysical Union, Washington, D. C., Aalto, K.R., and Harper, G.D. (leaders), 1989, Geologic evolution of the northernmost Coast Ranges and western Klamath Mountains, California: 28th International Geological Congress, Field Trip Guidebook T308, 82 p., American Geophysical Union, Washington, D. C. Aalto, K. R., Irwin, W. P., and Kelsey, H. M., 1988, Reconnaissance geologic map of the Pilot Creek quadrangle, Humboldt and Trinity Counties, Cali­ fornia: U. S. Geological Survey, Open-File Report 88-363, scale 1:62,500. Aalto, K. R., Moley, K., Knudsen, K. L., Stone, L., Phillips, P. A., and Renne, P. R., 1991, Sediment provenance and Cenozoic tectonic evolution of the central and western Klamath Mountains and northernmost Coast Ranges, California: Geological Society of America, Abstracts with Programs, v, 23, no. 5, p. 137. Aalto, K. R., Moley, Kathy, and Stone, Linda, 1995, Neogene paleogeography and tectonics of northwestern California, in Fritsche, A. E., ed, Cenozoic paleogeography of the western United States--II: Society of Economic Paleontologists and Mineralogists, Pacific Section, v. 75, p. 162-180. Abbot, H.L., Lt., 1857, Report upon explorations for a railroad route from the Sacramento Valley to the Columbia River, in Reports of explorations and surveys to ascertain the most practicable and economical route for a railroad from the
Recommended publications
  • DOGAMI GMS-5, Geology of the Powers Quadrangle, Oregon
    o thickness of about 1,500 feet. The southern outcrop terminates against the Sixes River fault, indicat­ Intermediate intrusive rocks, mainly diorite and quartz diorite, intrude the Gal ice Formation ing that the last movement involved down-faulting along the north side. south of the Sixes River fault. One stock, covering nearly 2 square miles, is bisected by Benson Creek, Megafossils are present in some of the bedded basal sandstone. Forominifera examined by W. W. and numerous small dikes are present nearby. One of the largest dikes extends from Rusty Creek eastward Rau (Baldwin, 1965) collected a short distance west of the mouth of Big Creek along the Sixes River were through the Middle Fork of the Sixes River into Salman Mountain. These intrusive racks are described by assigned a middle Eocene age . A middle Eocene microfauna in beds of similar age near Powers was ex­ Lund and Baldwin ( 1969) and are correlated with the Pearse Peak diorite of Koch ( 1966). The Pearse amined by Thoms (Born, 1963), and another outcrop along Fourmile Creek to the north contained a mid­ Peak body, which intrudes the Ga lice Formation along Elk River to the south, is described by Koch (1966, GEOLOGICAL MAP SERIES dle Eocene molluscan fauna (Allen and Baldwin, 1944). Phillips (1968) also collected o middle Eocene p. 51-52) . fauna in middle Umpqua strata along Fourmile Creek, o short distance north of the mapped area. Lode gold deposits reported by Brooks and Ramp ( 1968) in the South Fork of the Sixes drainage and on Rusty Butte are apparently associated with the dioritic intrusive bodies.
    [Show full text]
  • A Partial Short-Faced Bear Skeleton from an Ozark Cave with Comments on the Paleobiology of the Species
    Blaine W. Schubert and James E. Kaufmann - A partial short-faced bear skeleton from an Ozark cave with comments on the paleobiology of the species. Journal of Cave and Karst Studies 65(2): 101-110. A PARTIAL SHORT-FACED BEAR SKELETON FROM AN OZARK CAVE WITH COMMENTS ON THE PALEOBIOLOGY OF THE SPECIES BLAINE W. SCHUBERT Environmental Dynamics, 113 Ozark Hall, University of Arkansas, Fayetteville, AR 72701, and Geology Section, Research and Collections, Illinois State Museum, Springfield, IL 62703 USA JAMES E. KAUFMANN Department of Geology and Geophysics, University of Missouri-Rolla, Rolla, MO 65409 USA Portions of an extinct giant short-faced bear, Arctodus simus, were recovered from a remote area with- in an Ozark cave, herein named Big Bear Cave. The partially articulated skeleton was found in banded silt and clay sediments near a small entrenched stream. The sediment covered and preserved skeletal ele- ments of low vertical relief (e.g., feet) in articulation. Examination of a thin layer of manganese and clay under and adjacent to some skeletal remains revealed fossilized hair. The manganese in this layer is con- sidered to be a by-product of microorganisms feeding on the bear carcass. Although the skeleton was incomplete, the recovered material represents one of the more complete skeletons for this species. The stage of epiphyseal fusion in the skeleton indicates an osteologically immature individual. The specimen is considered to be a female because measurements of teeth and fused postcranial elements lie at the small end of the size range for A. simus. Like all other bears, the giant short-faced bear is sexually dimorphic.
    [Show full text]
  • Water Temperatures in the South Fork Trinity River Watershed in Northern California
    Water Temperatures in the South Fork Trinity River Watershed in Northern California PREPARED FOR: The U. S. Environmental Protection Agency and the North Coast Regional Water Quality Control Board for their consideration during the development of the South Fork Trinity River TMDL. PREPARED BY: Stuart Farber Timber Products Company Mt. Shasta, California Darrel Rankin USFS - Shasta Trinity National Forest Redding, California Tim Viel Natural Resource Conservation Service Weaverville, California October 1, 1998 TABLE OF CONTENTS ABSTRACT ........................................................................................................................................................ 2 1.0 INTRODUCTION ................................................................................................................................ 3 2.0 ENVIRONMENTAL CONDITIONS .................................................................................................. 5 2.1 GEOGRAPHIC RANGE ................................................................................................................................. 5 2.2 TOPOGRAPHY ............................................................................................................................................ 5 2.3 CLIMATE ................................................................................................................................................... 5 2.4 LANDSCAPE VEGETATION ........................................................................................................................
    [Show full text]
  • Volcanic Legacy
    United States Department of Agriculture Forest Service Pacifi c Southwest Region VOLCANIC LEGACY March 2012 SCENIC BYWAY ALL AMERICAN ROAD Interpretive Plan For portions through Lassen National Forest, Lassen Volcanic National Park, Klamath Basin National Wildlife Refuge Complex, Tule Lake, Lava Beds National Monument and World War II Valor in the Pacific National Monument 2 Table of Contents INTRODUCTION ........................................................................................................................................4 Background Information ........................................................................................................................4 Management Opportunities ....................................................................................................................5 Planning Assumptions .............................................................................................................................6 BYWAY GOALS AND OBJECTIVES ......................................................................................................7 Management Goals ..................................................................................................................................7 Management Objectives ..........................................................................................................................7 Visitor Experience Goals ........................................................................................................................7 Visitor
    [Show full text]
  • Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,***
    Woodburne, M.O.; Cione, A.L.; and Tonni, E.P., 2006, Central American provincialism and the 73 Great American Biotic Interchange, in Carranza-Castañeda, Óscar, and Lindsay, E.H., eds., Ad- vances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic In- terchange: Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial 4, p. 73–101. CENTRAL AMERICAN PROVINCIALISM AND THE GREAT AMERICAN BIOTIC INTERCHANGE Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,*** ABSTRACT The age and phyletic context of mammals that dispersed between North and South America during the past 9 m.y. is summarized. The presence of a Central American province of cladogenesis and faunal differentiation is explored. One apparent aspect of such a province is to delay dispersals of some taxa northward from Mexico into the continental United States, largely during the Blancan. Examples are recognized among the various xenar- thrans, and cervid artiodactyls. Whereas the concept of a Central American province has been mentioned in past investigations it is upgraded here. Paratoceras (protoceratid artio- dactyl) and rhynchotheriine proboscideans provide perhaps the most compelling examples of Central American cladogenesis (late Arikareean to early Barstovian and Hemphillian to Rancholabrean, respectively), but this category includes Hemphillian sigmodontine rodents, and perhaps a variety of carnivores and ungulates from Honduras in the medial Miocene, as well as peccaries and equids from Mexico. For South America, Mexican canids and hy- drochoerid rodents may have had an earlier development in Mexico. Remarkably, the first South American immigrants to Mexico (after the Miocene heralds; the xenarthrans Plaina and Glossotherium) apparently dispersed northward at the same time as the first Holarctic taxa dispersed to South America (sigmodontine rodents and the tayassuid artiodactyls).
    [Show full text]
  • Final CESA NC Summer Steelhead Petition
    FRIENDS OF THE EEL RIVER Working for the recovery of our Wild & Scenic River, its fisheries and communities. Friday, September 28, 2018 California Fish and Game Commission P.O. Box 944209 Sacramento, CA 94244-2090 Dear Commissioners, This is a petition to list Northern California summer steelhead under the California Endangered Species Act, (CESA, FGC § 2050 et seq.), as an endangered species. Under CESA, “Endangered species” means a native species or subspecies of a bird, mammal, fish, amphibian, reptile, or plant which is in serious danger of becoming extinct throughout all, or a significant portion, of its range due to one or more causes, including loss of habitat, change in habitat, overexploitation, predation, competition, or disease. (F&GC § 2062) Northern California summer steelhead (NC summer steelhead) are a native subspecies of fish in serious danger of becoming extinct throughout all of its range due to causes including loss of habitat and change in habitat. These extraordinary fish are superlative in many ways. They include the largest adult steelhead, as well as fish capable of handling the highest water velocities and of jumping the highest barriers of any salmonids. NC summer steelhead include the southernmost summer steelhead. They are able to tolerate water temperatures higher than any other anadromous salmonids. In their recent comprehensive review of the status and threats to salmonids in California, Moyle et al assessed the status of NC summer steelhead as being of Critical Concern, with a Status Score of 1.9 out of 5.0: Northern California (NC) summer steelhead are in long-term decline and this trend will continue without substantial human intervention on a broad scale.
    [Show full text]
  • Modeling Insolation, Multi-Spectral Imagery and Lidar Point-Cloud Metrics to Predict Plant Diversity in a Temperate Montane Forest
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2021 doi:10.20944/preprints202108.0078.v1 Article Modeling Insolation, Multi-spectral Imagery and LiDAR Point-cloud Metrics to Predict Plant Diversity in a Temperate Montane Forest Paul Dunn 1,* and Leonhard Blesius 2 1 Department of Geography and Environment, San Francisco State University; [email protected] 2 Department of Geography and Environment, San Francisco State University; [email protected] * Author to whom correspondence should be addressed. Abstract: Incident solar radiation (insolation) passing through the forest canopy to the ground sur- face is either absorbed or scattered. This phenomenon, known as radiation attenuation, is measured using the extinction coefficient (K). The amount of radiation at the ground surface of a given site is effectively controlled by the canopy’s surface and structure, determining its suitability for plant species. Menhinick’s and Simpson biodiversity indexes were selected as spatially explicit response var- iables for the regression equation using canopy structure metrics as predictors. Independent varia- bles include modeled area solar radiation, LiDAR derived canopy height, effective leaf area index data derived from multi-spectral imagery, and canopy strata metrics derived from LiDAR point- cloud data. The results support the hypothesis that, 1.) canopy surface and strata variability may be associated with understory species diversity due to habitat partitioning and radiation attenuation, and that, 2.) such a model can predict both this relationship and biodiversity clustering. The study data yielded significant correlations between predictor and response variables and was used to produce a multiple-linear model comprising canopy relief, texture of heights, and veg- etation density to predict understory plant diversity.
    [Show full text]
  • Environmental Assessment Chetco River Maintenance Dredging
    ENVIRONMENTAL ASSESSMENT CHETCO RIVER MAINTENANCE DREDGING Prepared For US Army Corps of Engineers Portland District PO Box 2946 Portland, OR 97208 Prepared By 600 University Street, Suite 610 Seattle, WA 98101 June 30, 2015 Chetco River Maintenance Dredging Environmental Assessment EXECUTIVE SUMMARY The Chetco River Federal Navigation Project was authorized by the Rivers and Harbors Acts of: March 2 1945, October 27 1965, and December 4 1981; with modifications from the Water Resources Development Act (WRDA) 1992. These authorizations include the construction, operation and maintenance of two jetty formations, and other navigation-related features, and maintenance of the navigation channels through the mouth of the Chetco River. The local sponsor is the Port of Brookings- Harbor. The purpose of the Chetco River Federal Navigation Project (the “Project”) is for the U. S. Army Corps of Engineers, Portland District (Corps), to maintain the Entrance Channel and the Brookings-Harbor Commercial Boat Basin Access Channel at their federally authorized depths and widths by periodically removing channel-restricting shoals of naturally occurring sediment material. These ongoing maintenance dredging activities provide adequate channel dimensions for vessel access and use upstream to approximately river mile (RM) 0.3. By maintaining adequate navigational dimensions, the Project further serves to decrease waiting times and increase navigability for vessels crossing the entrance bar. The main Entrance Channel shoals rapidly in late winter and early spring due to coastal littoral processes. The inner portion of the Entrance Channel and the Boat Basin Access Channel periodically shoal due to a buildup of material from upstream areas and lower fluvial origins.
    [Show full text]
  • Klamath Mountains Province Steelhead Project, 2001-02 Annual Report
    THE OREGON PLAN for Salmon and Watersheds Klamath Mountains Province Steelhead Project, 2001-02 Annual Report Report Number: OPSW-ODFW-2004-08 The Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, please contact the ADA Coordinator, P.O. Box 59, Portland, OR 97207, 503-872-5262. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-474-3145 to request. Klamath Mountains Province Steelhead Project 2001-02 Annual Report Oregon Plan for Salmon and Watersheds Monitoring Report No. OPSW-ODFW-2004-08 March 22, 2004 Thomas D. Satterthwaite Oregon Department of Fish and Wildlife 3406 Cherry Avenue NE Salem, Oregon 97303 Citation: Satterthwaite, T.D. 2004. Klamath Mountains Province Steelhead Project, 2001 Annual Report. Monitoring Program Report Number OPSW-ODFW- 2004-08, Oregon Department of Fish and Wildlife, Portland. CONTENTS Page SUMMARY....................................................... 1 Objective for 2001-02.................................... 1 Findings in 2001-02...................................... 1 INTRODUCTION.................................................. 1 METHODS....................................................... 2 RESULTS AND DISCUSSION........................................ 3 Determine Resource Status in Relation to Population Health
    [Show full text]
  • Segmentation of the Laramide Slab—Evidence from the Southern
    Segmentation of the Laramide SlabÐevidence from the southern Sierra Nevada region Jason Saleeby² Division of Geological and Planetary Sciences, California Institute of Technology, M.S. 100-23, Pasadena, California 91125, USA ABSTRACT ®ned by plate edge relations and the cor- 1992). A commonly cited plate tectonic mech- responding trajectory of Farallon±North anism for the orogeny is intensi®ed traction During the latest Cretaceous-early Paleo- American relative plate motions when and tectonic erosion of the subcontinental gene Laramide orogeny, the lithosphere be- viewed on a pre-Neogene palinspastic base. mantle lithosphere due to ¯attening of the sub- neath the southernmost Sierra Nevada The plate interior is suggested to have been ducted slab (Coney and Reynolds, 1977; batholith and the adjacent Mojave Desert deformed ®rst by end loading as the shal- Dickinson and Snyder, 1978; Bird, 1988). The region batholith was sheared off and dis- low slab segment initially descended be- response of the craton was deformation and placed deeper into the mantle. The litho- neath the plate edge, and then by greater uplift along a north-northeast±trending corri- sphere beneath the greater Sierra Nevada basal traction components as the shallow dor extending from southwest Arizona batholith to the north was left intact until segment progressed beneath the cratonic through Wyoming (Fig. 1). This intracratonal mid-Miocene time, when fragments of it region. The subcontinental mantle litho- deformation zone is for the most part inboard were entrained as volcanic xenoliths. The sphere beneath the cratonic deformation of the Cordilleran (Sevier) foreland fold-thrust Laramide slab was evidently segmented zone remained intact through Laramide belt, thereby calling for special circumstances into a shallow ¯at segment to the south and time.
    [Show full text]
  • Faced Bear, Arctotherium, from the Pleistocene of California
    I. RELATIONSHIPS AND STRUCTURE OF THE SHORT~ FACED BEAR, ARCTOTHERIUM, FROM THE PLEISTOCENE OF CALIFORNIA. By JOHN C. MERRIAM and CHESTER STOCK. With ten plates and five text-figures. 1 CONTENTS. PAGE Introduct-ion. 3 Systematic position of Arctotherium and its allies with relation to the typical Ursidae. 4 Origin of the Tremarctinae. 5 Summary of species of Arctotherium in the Pleistocene of North America. 7 Occurrence in California of arctotheres and associated faunas . 9 Potter Creek Cave. 9 Rancho La Brea. 10 McKittrick. .......... .... .......... ....... ...... ................. 11 Odontolo~Y. and osteology of Arctotherium. 11 DentitiOn . 11 Axial skeleton. 16 Appendicular skeleton. 21 Bibliography . 34 2 RELATIONSHIPS AND STRUCTURE OF THE SHORT-FACED BEAR, ARCTOTHERIUM, FROM THE PLEISTOCENE OF CALIFORNIA. BY JoHN C . MERRIAM AND CHESTER STocK. INTRODUCTION. The peculiar short-faced Californian bear, known as Arctotherium simum, was described by Cope in 1879 from a single specimen, con­ sisting of a skull minus the lower jaw, found by J. A. Richardson in 1878 in Potter Creek Cave on the McCloud River in northern California. Since the description of A. simum, a nearly perfect skull with lower jaw and a large quantity of additional material, representing nearly all parts of the skeleton and dentition of this species, has been obtained from the deposits of Potter Creek Cave as a result of further work carried on for the University of California by E. L. Furlong and by W. J. Sinclair in 1902 and 1903. Splendid material of Arctotherium has also been secured in the Pleistocene asphalt beds at Rancho La Brea by the Los Angeles Museum of History, Science, and Art.
    [Show full text]
  • Trinity Alps Proposed Wilderness Area Additions
    Proposed Wilderness Pattison Northern California Mountains and Rivers Trinity Alps Proposed Wilderness Area Additions Description Quick Facts The southern proposed additions are composed of rugged, heavily forested Management Agencies: mid to low-elevation country that would complement the adjacent Shasta-Trinity and Six Rivers highlands of the Trinity Alps Wilderness if protected. National Forests The Wild and Scenic New River, Canyon Creek Proposed Wild and Scenic River and other streams that flow out of the proposed additions provide Location: cold, clear water essential for the survival of endangered steelhead trout Trinity and Humboldt nd and coho and Chinook salmon populations in the Trinity River. Large Counties, CA; 2 boulders and abundant small waterfalls grace many of these streams, and Congressional District the fish can often be seen leaping up the rapids to spawn. Watershed: The New River watershed is well known for its purity, even during fierce Trinity River rainstorms. The proposed additions are an extremely important refuge for unique and endangered species, including nine rare plants. Reminders of Size: 73,802 acres the area’s Gold Rush history abound in the proposed additions in the form of abandoned mines, rock piles, and ditches. As is the case in the adjacent Recreational Uses: Trinity Alps Wilderness, these disturbances are more often than not covered Whitewater boating, by vegetation, and do not in any way detract from the region’s overall wild swimming, picnicking, character. Indeed, these historical features simply add to the public’s hiking, horseback riding, fascination with this wild, remote country. The New River offers challenging hunting, fishing, scenic vistas.
    [Show full text]