Effects of Erythrocyte Aggregation on Blood Rheology in Regard to Future Sepsis Diagnosis Application

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Erythrocyte Aggregation on Blood Rheology in Regard to Future Sepsis Diagnosis Application Effects of Erythrocyte Aggregation on Blood Rheology in Regard to Future Sepsis Diagnosis Application Darren Burley Courtney Campagna Aislinn Harte Samantha Kelly Max Spiegelhoff Advisors: Prof Raymond Page Prof Ahmet Can Sabuncu May 7th, 2020 Contents Authorship .................................................................................................................................................... 1 Acknowledgements ...................................................................................................................................... 2 Abstract ........................................................................................................................................................ 3 Chapter 1: Introduction ................................................................................................................................ 4 Chapter 2: Background ................................................................................................................................. 5 2.1 Sepsis Overview .................................................................................................................................. 5 2.2 Current Diagnostic Methods ............................................................................................................... 7 2.2.1 Blood Culture ............................................................................................................................... 7 2.2.2 Protein Analysis ............................................................................................................................ 8 2.2.3 Prothrombin and Partial Thromboplastin Time/Platelet Counts ................................................. 8 2.3 Potential Biological Tests for Sepsis Diagnosis ................................................................................... 9 2.3.1 Biomarkers ................................................................................................................................... 9 2.4 Potential Mechanical Tests for Sepsis Diagnosis .............................................................................. 16 2.4.1 Red Blood Cell Deformability ..................................................................................................... 16 2.4.2 RBC Aggregation ........................................................................................................................ 20 2.4.3 White Blood Cells ....................................................................................................................... 23 Chapter 3: Project Strategy ........................................................................................................................ 26 3.1 Client Statement ............................................................................................................................... 26 3.2 Design Requirements ........................................................................................................................ 27 3.2.1 Standards ................................................................................................................................... 27 3.3 Revised Project Statement ................................................................................................................ 29 Chapter 4: Design Process .......................................................................................................................... 30 4.1 Needs Analysis .................................................................................................................................. 30 4.2 Conceptual Designs and Prototype Testing ...................................................................................... 31 4.2.1 Erythrocyte Sedimentation Rate ................................................................................................ 32 4.2.2 Capillary Fill ................................................................................................................................ 34 4.2.3 Vibration Syllectometry ............................................................................................................. 36 4.3 Alternative Designs ........................................................................................................................... 37 2 4.4 Final Design Selection ....................................................................................................................... 38 4.4.1 Blood Preparation ...................................................................................................................... 38 4.4.2 Micro-ESR Methodology & Materials ........................................................................................ 39 4.4.3 Capillary Fill Methodology & Materials...................................................................................... 40 4.4.4 Laser Syllectometry Methodology & Materials ......................................................................... 42 Chapter 5: Design Verification ................................................................................................................... 44 5.1 Micro-ESR Results ............................................................................................................................. 44 5.2 Capillary Fill Results........................................................................................................................... 46 5.3 Laser Syllectometry Results .............................................................................................................. 47 Chapter 6: Final Design and Validation ..................................................................................................... 55 6.1 Final Design CAD Prototype .............................................................................................................. 55 6.2 Standards .......................................................................................................................................... 56 6.3 Economics ......................................................................................................................................... 57 6.4 Environmental Impact ....................................................................................................................... 58 6.5 Societal Influence .............................................................................................................................. 58 6.6 Political Ramifications ....................................................................................................................... 59 6.7 Ethical Concerns ................................................................................................................................ 59 6.8 Health and Safety .............................................................................................................................. 59 6.9 Manufacturability ............................................................................................................................. 60 6.10 Sustainability ................................................................................................................................... 61 Chapter 7: Discussion/Future .................................................................................................................... 62 7.1 Micro-ESR .......................................................................................................................................... 62 7.1.1 Implications ................................................................................................................................ 62 7.1.2 Limitations .................................................................................................................................. 62 7.1.3 Future ......................................................................................................................................... 63 7.2 Capillary Fill ....................................................................................................................................... 64 7.2.1 Implications ................................................................................................................................ 64 7.2.2 Limitations .................................................................................................................................. 64 7.2.3 Future ......................................................................................................................................... 65 7.3 Syllectometry .................................................................................................................................... 66 3 7.3.1 Implications ................................................................................................................................ 66 7.3.2 Limitations .................................................................................................................................. 67 7.3.3 Future ......................................................................................................................................... 68 7.4 Device Discussion .............................................................................................................................. 69 Chapter 8: Conclusions and Recommendations .......................................................................................
Recommended publications
  • Red Blood Cell Rheology in Sepsis K
    M. Piagnerelli Red blood cell rheology in sepsis K. Zouaoui Boudjeltia M. Vanhaeverbeek J.-L. Vincent Abstract Changes in red blood cell membrane components such as sialic (RBC) function can contribute to acid, and an increase in others such alterations in microcirculatory blood as 2,3 diphosphoglycerate. Other flow and cellular dysoxia in sepsis. factors include interactions with Decreases in RBC and neutrophil white blood cells and their products deformability impair the passage of (reactive oxygen species), or the these cells through the microcircula- effects of temperature variations. tion. While the role of leukocytes Understanding the mechanisms of has been the focus of many studies altered RBC rheology in sepsis, and in sepsis, the role of erythrocyte the effects on blood flow and oxygen rheological alterations in this syn- transport, may lead to improved drome has only recently been inves- patient management and reductions tigated. RBC rheology can be influ- in morbidity and mortality. enced by many factors, including alterations in intracellular calcium Keywords Erythrocyte · and adenosine triphosphate (ATP) Deformability · Nitric oxide · concentrations, the effects of nitric Sialic acid · Multiple organ failure · oxide, a decrease in some RBC Oxygen transport Introduction ogy of microcirculatory alterations and, perhaps, the treatment of sepsis. Severe sepsis and septic shock are the commonest causes This review evaluates alterations occurring in RBC of death in intensive care units (ICUs), with associated rheology during sepsis and possible underlying mecha- mortality rates of 30–50% [1]. Sepsis is a complex nisms. The potential implications of blood transfusion pathophysiological process that involves both alterations and erythropoietin administration in sepsis will not be in the microcirculation and changes in the biochemical discussed.
    [Show full text]
  • Canine Immune-Mediated Hemolytic Anemia – Brief Review
    TRADITION AND MODERNITY IN VETERINARY MEDICINE, 2018, vol. 3, No 1(4): 59–64 CANINE IMMUNE-MEDIATED HEMOLYTIC ANEMIA – BRIEF REVIEW Iliyan Manev1, Victoria Marincheva2 1University of Forestry, Faculty of Veterinary Medicine, Sofia, Bulgaria 2Animal Rescue, Sofia, Bulgaria E-mail: [email protected] ABSTRACT Immune-mediated hemolytic anemia (IMHA) is a common autoimmune disorder in dogs. It affects both sexes but occurs more often in female, middle-aged animals. IMHA can be idiopathic (primary) or secondary to infectious, neoplastic and autoimmune disorders. There is an acute regenerative anemia with accompanying hypoxia. Destruction of erythrocytes can be intravascular (as a result of complement system activation) or extravascular (removal of antibody-coated red blood cells by the macrophages in the liver and spleen). Diag- nosis is based on the presence of anemia, in vitro autoagglutination, positive direct antiglobulin test (Coomb`s test), detection of spherocytes. It is crucial to exclude possible secondary causes. The treatment protocol aims to cease cell destruction by high doses of corticosteroids, aggressive supportive care and long-term application of immunosuppressive drug combinations. Still lethality is high because of complications (pulmonary throm- boembolism, DIC), medication resistance, relapses. Key words: immune-mediated, anemia, canine, hemolysis, immunosuppressive drugs. Immune-mediated hemolytic anemia is one of the commonly diagnosed canine autoimmune diseases and a model of acute and clinically relevant anemia. Impaired
    [Show full text]
  • Impaired Deformability of Erythrocytes and Neutrophils in Children with Newly Diagnosed Insulin-Dependent Diabetes Mellitus
    Diabetologia (1999) 42: 865±869 Ó Springer-Verlag 1999 Impaired deformability of erythrocytes and neutrophils in children with newly diagnosed insulin-dependent diabetes mellitus O. Linderkamp1,P.Ruef1, E.P. Zilow1, G.F. Hoffmann2 1 Department of Paediatrics, University of Heidelberg, Germany 2 Department of Paediatrics, University of Marburg, Germany Abstract than in healthy children (3 ± 2%). Deformability of passive neutrophils was greatly decreased in the chil- Aims/hypothesis. Abnormal rheological properties of dren with onset diabetes and moderately reduced in erythrocytes, leucocytes and plasma may have a role the diabetic children who were treated with insulin. in the development of diabetic microangiopathy. We Neutrophil deformation (r = ±0.52) and erythrocyte hypothesized that changed haemorrheological vari- deformation at 0.6 Pa (r = ±0.62) were inversely relat- ables may already be found in children with onset di- ed to haemoglobin A1c. Haematocrit and blood vis- abetes. cosity were increased in the untreated children and Methods. Erythrocyte deformation (rheoscope), neu- in the children treated with insulin for 5 to 8 years. trophil deformation (micropipette), erythrocyte ag- Plasma viscosity and erythrocyte aggregation were gregation, blood and plasma viscosity were measured similar in the three groups of children. in 15 children with insulin-dependent diabetes melli- Conclusion/interpretation. Decreased erythrocyte de- tus before initiation of insulin treatment and 4 to formation at low shear force, increased count of ac- 6 weeks later, 15 diabetic children treated with insulin tive neutrophils and impaired deformability of pas- for 5 to 8 years, 15 healthy children and 15 healthy sive neutrophils may increase the risk for acute cere- adults.
    [Show full text]
  • Effects of Red Blood Cell Aggregation on Microparticle Margination in Human Blood
    Effects of Red Blood Cell Aggregation on Microparticle Margination in Human Blood Mark Stroobach Supervised By: Prof. Marianne Fenech Thesis submitted in partial fulfillment of the requirements for the Master of Applied Science in Biomedical Engineering Degree University of Ottawa Ottawa, Ontario, Canada © Mark Stroobach, Ottawa, Canada, 2017 Abstract Margination is the migration of particles in a channel towards the outer walls of the channel. In blood microcirculation, studying the margination of microparticles is important to understand platelet migration and the kinetics of drug delivery. Many new topics in drug delivery research examine the slow release of drugs through micro particles, such as micelles. The margination of such drug carriers is related to tissue absorption and, consequently, to the efficiency of drug delivery. We hypothesized that the intensity of red blood cell (RBC) aggregation will change the level of margination in a cylindrical channel. RBC aggregation is the reversible process of RBCs clumping together over time, under low fluid shear rate. A higher level of aggregation means that this clumping occurs more quickly. The goal of this thesis is to design an experiment that measures the level margination of microparticles and the effect that RBC aggregation has on margination, in a controlled in vitro environment. Fluorescent microparticles were added to human blood preparations. The aggregation properties of the blood preparation were modulated by the addition of a macromolecule (Dextran 500). The blood preparations were injected into PDMS microfluidic devices that were modified to have circular channels in order to better mimic the geometry of physiological microcirculation. We designed a circular microchannel that worked to capture the marginating microparticles and it was found that the level of margination of the microparticles increased with an increase in aggregation of the RBCs.
    [Show full text]
  • Canine Multiple Myeloma
    Canine Multiple Myeloma Meredith Maczuzak, DVM; Kenneth S. Latimer, DVM, PhD; Paula M. Krimer, DVM, DVSc; and Perry J. Bain, DVM, PhD Class of 2003 (Maczuzak) and Department of Pathology (Latimer, Krimer, Bain), College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7388 Introduction Multiple myeloma or plasma cell myeloma, is a neoplasm of well- differentiated B cell lymphocytes typically originating from the bone marrow. Neoplastic cells can metastasize widely, having a predilection for bone and resulting in osteolysis. The malignant transformation of a single B cell can secrete a homogenous immunoglobulin product known as paraprotein, which will mimic the structure of normal immunoglobulins. Overabundant production of paraprotein, consisting of any of the immunoglobulin classes, will appear as a sharp, well-defined peak or monoclonal gammopathy on serum electrophoresis. The most frequently encountered multiple myelomas secrete IgG or IgA paraproteins, however IgM myelomas (macroglobulinemia) have also been diagnosed in companion animals. Light chain disease is caused by plasma cell overproduction of the light chain segment of the immunoglobulin complex, consisting of either the lambda or kappa light chain. These proteins are referred to as Bence-Jones proteins and are the most commonly observed immunoglobulin fragments in the monoclonal gammopathies.2 There are rare instances where a malignant plasma cell neoplasm will be nonsecretory. These tumors occur in approximately 1% of all cases of multiple myeloma and are referred
    [Show full text]
  • Complete Blood Count in Primary Care
    Complete Blood Count in Primary Care bpac nz better medicine Editorial Team bpacnz Tony Fraser 10 George Street Professor Murray Tilyard PO Box 6032, Dunedin Clinical Advisory Group phone 03 477 5418 Dr Dave Colquhoun Michele Cray free fax 0800 bpac nz Dr Rosemary Ikram www.bpac.org.nz Dr Peter Jensen Dr Cam Kyle Dr Chris Leathart Dr Lynn McBain Associate Professor Jim Reid Dr David Reith Professor Murray Tilyard Programme Development Team Noni Allison Rachael Clarke Rebecca Didham Terry Ehau Peter Ellison Dr Malcolm Kendall-Smith Dr Anne Marie Tangney Dr Trevor Walker Dr Sharyn Willis Dave Woods Report Development Team Justine Broadley Todd Gillies Lana Johnson Web Gordon Smith Design Michael Crawford Management and Administration Kaye Baldwin Tony Fraser Kyla Letman Professor Murray Tilyard Distribution Zane Lindon Lyn Thomlinson Colleen Witchall All information is intended for use by competent health care professionals and should be utilised in conjunction with © May 2008 pertinent clinical data. Contents Key points/purpose 2 Introduction 2 Background ▪ Haematopoiesis - Cell development 3 ▪ Limitations of reference ranges for the CBC 4 ▪ Borderline abnormal results must be interpreted in clinical context 4 ▪ History and clinical examination 4 White Cells ▪ Neutrophils 5 ▪ Lymphocytes 9 ▪ Monocytes 11 ▪ Basophils 12 ▪ Eosinophils 12 ▪ Platelets 13 Haemoglobin and red cell indices ▪ Low haemoglobin 15 ▪ Microcytic anaemia 15 ▪ Normocytic anaemia 16 ▪ Macrocytic anaemia 17 ▪ High haemoglobin 17 ▪ Other red cell indices 18 Summary Table 19 Glossary 20 This resource is a consensus document, developed with haematology and general practice input. We would like to thank: Dr Liam Fernyhough, Haematologist, Canterbury Health Laboratories Dr Chris Leathart, GP, Christchurch Dr Edward Theakston, Haematologist, Diagnostic Medlab Ltd We would like to acknowledge their advice, expertise and valuable feedback on this document.
    [Show full text]
  • 8 Erythrocyte Sedimentation Rate (Esr)
    MODULE Erythrocyte Sedimentation Rate (ESR) Hematology and Blood Bank Technique 8 Notes ERYTHROCYTE SEDIMENTATION RATE (ESR) 8.1 INTRODUCTION Erythryocyte Sedimentation Rate (ESR) is the measurement after 1hour of the sedimentation of red cells when blood is allowed to stand in an open ended glass tube mounted vertically on a stand. OBJECTIVES After reading this lesson, you will be able to: z describe the methods used for measuring ESR z enlist the factors influencing the sedimentation of red cells z discuss the significance of measuring ESR z describe the reticulocyte count and it’s significance 8.2 METHODS OF MEASURING ESR ESR can be measured in the laboratory by two methods z Westergren method z Automated ESR analyser The International Council for Standardization in Hematology recommends the use of Westergren method as the standard method for measuring ESR. Westergren method The Westergren pipette is a glass pipette 30 cm in length and 2.5mm in diameter. The bore is uniform to within 5% throughout. A graduated scale in mm extends over the lower 20 cm. 62 HEMATOLOGY AND BLOOD BANK TECHNIQUE Erythrocyte Sedimentation Rate (ESR) MODULE Sample: Venous blood collected in EDTA. Four volumes of blood is diluted in Hematology and Blood 1 volume of citrate. Alternatively, 2ml blood is directly collected in 0.5ml of Bank Technique 3.8% trisodium citrate. Equipment required 1. Westergren pipette 2. Stainless steel rack for holding pipette Notes 3. Timer Method 1. Mix the blood sample well and draw in the Westergren pipette to the 0mm mark with a rubber teat. 2. Place the tube exactly vertical in the rack which has a rubber cork at the bottom.
    [Show full text]
  • Mean Red Cell and Platelet Volume and Blood Cells Aggregation in Children with Inflammatory Bowel Diseases
    Research Article Clinics in Surgery Published: 19 Jul, 2018 Mean Red Cell and Platelet Volume and Blood Cells Aggregation in Children with Inflammatory Bowel Diseases Grigory Ya Levin*, Alexandra N Popovicheva, Larisa N Sosnina, El’vira N Fedulova and Yury A Sheremet’ev Department of Gravitation Surgery and Hemodialysis, Federal State Budgetary Institution of the Ministry of Health of Russian Federation, Russia Abstract Background: It has been discussed in literature whether platelet and erythrocyte indexes can serve as biomarkers of activity of Inflammatory Bowel Diseases (IBD). However, how these indexes influence functional properties of platelets and erythrocytes, primarily their aggregation capacity in children with IBD, remains unclear. Objectives: The objective of the present research was to study the association between the changes in platelet and erythrocyte indexes (MPV, PDW, MCV, and RDW) blood cells aggregation during the course of therapy of children with IBD. Methods: The study included 50 patients of both sex ages 6 to 17, 25 patients with UC, and 25 patients with CD. The diagnosis was based on a complex examination including endoscopic examination of the intestinal mucosa with a morphological analysis of biopsies. Spontaneous (shear-induced) aggregation of platelets and erythrocytes was studied using a rheoscope designed according to the method. Results: It was shown that the mean platelet volume and the Platelet Distribution Width (PDW) significantly decrease at IBD, whilst Erythrocyte Distribution Width (RDW) and mean erythrocyte OPEN ACCESS volume increase. A strong correlation between RDW and IBD severity as well as a negative correlation *Correspondence: between MPV and IBD severity were revealed. For the first time it has been established that, with Levin Grigory Yakovlevich, a reduced volume, platelets and erythrocytes retain their functional properties, in particular their Department of Gravitation Surgery and aggregation activity.
    [Show full text]
  • Physical Charaterization of Red Blood Cell Aggregation Daniel Amadeus Dominic Flormann
    Physical charaterization of red blood cell aggregation Daniel Amadeus Dominic Flormann To cite this version: Daniel Amadeus Dominic Flormann. Physical charaterization of red blood cell aggregation. Biological Physics [physics.bio-ph]. Universität des Saarlandes, 2017. English. NNT : 2017GREAY002. tel- 01577838 HAL Id: tel-01577838 https://tel.archives-ouvertes.fr/tel-01577838 Submitted on 28 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES préparée dans le cadre d’une cotutelle entre la Communauté Université Grenoble Alpes et l’Universität des Saarlandes Spécialité : Physique pour les sciences du vivant Arrêté ministériel : 25 mai 2016 Présentée par Daniel Amadeus Dominic Flormann Thèse dirigée par M. Thomas Podgorski et M. Christian Wagner préparée au sein du Laboratoire Interdisciplinaire de Physique, Grenoble et de Experimentalphysik, Saarbrücken dans les Écoles doctorales de Physique de l’Université Grenoble Alpes et de Dekanat der Universität des Saarlandes
    [Show full text]
  • Successful Autologous Peripheral Blood Stem Cell Harvest and ­Transplantation After Splenectomy in a Patient with Multiple ­Myeloma with Hereditary Spherocytosis
    International Journal of Myeloma 8(3): 11–15, 2018 CASE REPORT ©Japanese Society of Myeloma Successful autologous peripheral blood stem cell harvest and transplantation after splenectomy in a patient with multiple myeloma with hereditary spherocytosis Daisuke FURUYA1,4, Rikio SUZUKI1,4, Jun AMAKI1, Daisuke OGIYA1, Hiromichi MURAYAMA1,2, Hidetsugu KAWAI1, Akifumi ICHIKI1,3, Sawako SHIRAIWA1, Shohei KAWAKAMI1, Kaito HARADA1, Yoshiaki OGAWA1, Hiroshi KAWADA1 and Kiyoshi ANDO1 Hereditary spherocytosis (HS) is the most common inherited red cell membrane disorder worldwide. We herein report a 58-year-old male HS patient with mild splenomegaly who developed symptomatic multiple myeloma (MM). Autologous stem cell transplantation (ASCT) was considered to be adopted against MM, although there was a possibility of splenic rupture following stem cell mobilization. Therefore, splenectomy was performed prior to stem cell harvest, and he was able to safely mobilize sufficient CD34+ cells with G-CSF and plerixafor and undergo ASCT. This case suggests that stem cell mobilization after splenectomy is safe and effective in HS patients complicated with malignancies. Key words: multiple myeloma, hereditary spherocytosis, splenectomy, autologous peripheral blood stem cell harvest Introduction Consolidation with melphalan-based HDT followed by ASCT is still the standard treatment option for transplant-eligible Multiple myeloma (MM) is characterized by clonal prolifera- patients with MM, leading to higher complete response rates tion of abnormal plasma cells in the bone marrow (BM) micro- and increased progression-free survival and overall survival environment, monoclonal protein in the blood and/or urine, compared with conventional chemotherapy regimens [2]. bone lesions, and immunodeficiency [1]. In recent years, the Importantly, the emergence of novel agent-based therapy introduction of high-dose chemotherapy (HDT) and autol- combined with ASCT has revolutionized MM therapy [2].
    [Show full text]
  • 10 11 Cyto Slides 81-85
    NEW YORK STATE CYTOHEMATOLOGY PROFICIENCY TESTING PROGRAM Glass Slide Critique ~ November 2010 Slide 081 Diagnosis: MDS to AML 9 WBC 51.0 x 10 /L 12 Available data: RBC 3.39 x 10 /L 72 year-old female Hemoglobin 9.6 g/dL Hematocrit 29.1 % MCV 86.0 fL Platelet count 16 x 109 /L The significant finding in this case of Acute Myelogenous Leukemia (AML) was the presence of many blast forms. The participant median for blasts, all types was 88. The blast cells in this case (Image 081) are large, irregular in shape and contain large prominent nucleoli. It is difficult to identify a blast cell as a myeloblast without the presence of an Auer rod in the cytoplasm. Auer rods were reported by three participants. Two systems are used to classify AML into subtypes, the French- American-British (FAB) and the World Health Organization (WHO). Most are familiar with the FAB classification. The WHO classification system takes into consideration prognostic factors in classifying AML. These factors include cytogenetic test results, patient’s age, white blood cell count, pre-existing blood disorders and a history of treatment with chemotherapy and/or radiation therapy for a prior cancer. The platelet count in this case was 16,000. Reduced number of platelets was correctly reported by 346 (94%) of participants. Approximately eight percent of participants commented that the red blood cells in this case were difficult to evaluate due to the presence of a bluish hue around the red blood cells. Comments received included, “On slide 081 the morphology was difficult to evaluate since there was a large amount of protein surrounding RBC’s”, “Slide 081 unable to distinguish red cell morphology due to protein” and “Unable to adequately assess morphology on slide 081 due to poor stain”.
    [Show full text]
  • Effect of Whole-Body Cryotherapy on Morphological, Rheological, and Biochemical Blood Indices in Individuals with Multiple Sclerosis
    Effect of whole-body cryotherapy on morphological, rheological, and biochemical blood indices in individuals with multiple sclerosis Bartłomiej Ptaszek University School of Physical Education in Kraków Aneta Teległów ( [email protected] ) University School of Physical Education in Kraków Justyna Adamiak University School of Physical Education in Kraków Jacek Głodzik University School of Physical Education in Kraków Szymon Podsiadło University School of Physical Education in Kraków Jakub Marchewka University School of Physical Education in Kraków Research Article Keywords: whole-body cryotherapy, blood indices, multiple sclerosis Posted Date: March 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-263820/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract The study aim was to examine the impact of 20 whole-body cryotherapy sessions on biochemical and rheological blood indices in multiple sclerosis individuals. The study group involved 15 women (mean age: 41.53 ± 6.98 years) with diagnosed multiple sclerosis who underwent whole-body cryotherapy sessions. The rst control group consisted of 20 women (mean age: 40.45 ± 4.77 years) with multiple sclerosis who received no cryotherapy intervention. The second control group comprised 15 women (mean age: 38.47 ± 6.0 years) without neurological diseases or other chronic conditions who participated in cryotherapy sessions. For blood indices analysis, venous blood was collected twice: on the day of cryotherapy commencement and after the 20 cryotherapy sessions. Blood counts were determined with a hematology analyzer. A laser-optical rotational cell analyzer served to investigate erythrocyte aggregation and deformability.
    [Show full text]