An Upper Bound for the Background Rate of Human Extinction Andrew E
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Apocalypse Now? Initial Lessons from the Covid-19 Pandemic for the Governance of Existential and Global Catastrophic Risks
journal of international humanitarian legal studies 11 (2020) 295-310 brill.com/ihls Apocalypse Now? Initial Lessons from the Covid-19 Pandemic for the Governance of Existential and Global Catastrophic Risks Hin-Yan Liu, Kristian Lauta and Matthijs Maas Faculty of Law, University of Copenhagen, Copenhagen, Denmark [email protected]; [email protected]; [email protected] Abstract This paper explores the ongoing Covid-19 pandemic through the framework of exis- tential risks – a class of extreme risks that threaten the entire future of humanity. In doing so, we tease out three lessons: (1) possible reasons underlying the limits and shortfalls of international law, international institutions and other actors which Covid-19 has revealed, and what they reveal about the resilience or fragility of institu- tional frameworks in the face of existential risks; (2) using Covid-19 to test and refine our prior ‘Boring Apocalypses’ model for understanding the interplay of hazards, vul- nerabilities and exposures in facilitating a particular disaster, or magnifying its effects; and (3) to extrapolate some possible futures for existential risk scholarship and governance. Keywords Covid-19 – pandemics – existential risks – global catastrophic risks – boring apocalypses 1 Introduction: Our First ‘Brush’ with Existential Risk? All too suddenly, yesterday’s ‘impossibilities’ have turned into today’s ‘condi- tions’. The impossible has already happened, and quickly. The impact of the Covid-19 pandemic, both directly and as manifested through the far-reaching global societal responses to it, signal a jarring departure away from even the © koninklijke brill nv, leiden, 2020 | doi:10.1163/18781527-01102004Downloaded from Brill.com09/27/2021 12:13:00AM via free access <UN> 296 Liu, Lauta and Maas recent past, and suggest that our futures will be profoundly different in its af- termath. -
Phillip STILLMAN, the Narrative of Human Extinction and the Logic Of
Phillip Stillman Two Nineteenth- Century Contributions to Climate Change Discourse: The Narra- W e a tive of Hu- t h e r man Extinction S c a and the p e g o Logic of Eco- a t 8 sys- tem Management 92 The Narrative of Human Extinction ... Consider the following passage from Oscar Wilde’s “Decay of Lying” (1891): Where, if not from the Impressionists, do we get those wonderful brown fogs that come creeping down our streets, blurring the gas-lamps and changing the houses into monstrous shadows? [...] The extraordinary change that has taken place in the climate of London during the last ten years is entirely due to a particular school of Art. [...] For what is Nature? Nature is no great mother who has borne us. She is our creation. It is in our brain that she quickens to life. Things are because we see them, and what we see, and how we see it, depends on the Arts that have influenced us.1 The speaker is Vivian, a self-consciously sophistical aesthete, and his argument is that “Nature” is the causal consequence of “Art.” Not long ago, a literary critic might have quoted such a passage with unmitigated approbation: “Things are because we see them, and what we see, and how we see it, depends on the Arts that have influenced us.” The post-structural resonance of that kind of claim is strong, and the Jamesonian tradition of treating art as a means through which ideology reproduces itself depends heavily on the conviction that between the knower and the known, there must be some determining symbolic mediation.2 Now, however, it is difficult not to hesitate over the assertion that the “extraordinary change that has taken place in the climate of London during the last ten years is entirely due to a particular school of Art.” Now we tend to take referential 1 Oscar Wilde, “The Decay of Lying,” in The claims about “Nature” very seriously, especially with regard to Artist as Critic: Critical Writings of Oscar Wilde, ed. -
UC Santa Barbara Other Recent Work
UC Santa Barbara Other Recent Work Title Geopolitics, History, and International Relations Permalink https://escholarship.org/uc/item/29z457nf Author Robinson, William I. Publication Date 2009 Peer reviewed eScholarship.org Powered by the California Digital Library University of California OFFICIAL JOURNAL OF THE CONTEMPORARY SCIENCE ASSOCIATION • NEW YORK Geopolitics, History, and International Relations VOLUME 1(2) • 2009 ADDLETON ACADEMIC PUBLISHERS • NEW YORK Geopolitics, History, and International Relations 1(2) 2009 An international peer-reviewed academic journal Copyright © 2009 by the Contemporary Science Association, New York Geopolitics, History, and International Relations seeks to explore the theoretical implications of contemporary geopolitics with particular reference to territorial problems and issues of state sovereignty, and publishes papers on contemporary world politics and the global political economy from a variety of methodologies and approaches. Interdisciplinary and wide-ranging in scope, Geopolitics, History, and International Relations also provides a forum for discussion on the latest developments in the theory of international relations and aims to promote an understanding of the breadth, depth and policy relevance of international history. Its purpose is to stimulate and disseminate theory-aware research and scholarship in international relations throughout the international academic community. Geopolitics, History, and International Relations offers important original contributions by outstanding scholars and has the potential to become one of the leading journals in the field, embracing all aspects of the history of relations between states and societies. Journal ranking: A on a seven-point scale (A+, A, B+, B, C+, C, D). Geopolitics, History, and International Relations is published twice a year by Addleton Academic Publishers, 30-18 50th Street, Woodside, New York, 11377. -
Flood Basalts and Glacier Floods—Roadside Geology
u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1. -
GEOG 442 – the Great Extinctions Evolution Has Spawned An
GEOG 442 – The Great Extinctions Evolution has spawned an incredible diversity of lineages from nearly the beginning of the planet itself to the present. Speciation often results from the isolation of a population of organisms, which then evolve along their own trajectories, depending on such factors as founder effect, genetic drift, and natural selection in environments that are different to some extent from the range of environments from which they've been isolated. Speciation can be allopatric or sympatric. Once a new species forms, it is endemic to its source region. It may then be later able to escape its source region, migrating into new regions and even becoming cosmopolitan. Even a cosmopolitan species is subject to environmental change out of its environmental envelope and to competition from other species. This can then set off a process of decline and local extirpations across its range, resulting in disjunct distribution, eventually recreating an endemic distribution in its last redoubt before its final extinction. Extinction, then, is the normal fate of species. If a species is lucky, it may go extinct by dint of having evolved into one or more daughter lineages that are so divergent from the parent that we consider the parent extinct. Many species are not lucky: Their last lineage fades out. Extinction is normal. We can talk about the background extinction rate, the normal loss of species and lineages through time. The average duration of species is somewhere between 1 and 13 million years, depending on the kind of critter we're talking about. Mammal species tend to last about 1-2 million years; unicellular dinoflagellate algae are on the other end at 13 million years. -
Global Catastrophic Risks Survey
GLOBAL CATASTROPHIC RISKS SURVEY (2008) Technical Report 2008/1 Published by Future of Humanity Institute, Oxford University Anders Sandberg and Nick Bostrom At the Global Catastrophic Risk Conference in Oxford (17‐20 July, 2008) an informal survey was circulated among participants, asking them to make their best guess at the chance that there will be disasters of different types before 2100. This report summarizes the main results. The median extinction risk estimates were: Risk At least 1 million At least 1 billion Human extinction dead dead Number killed by 25% 10% 5% molecular nanotech weapons. Total killed by 10% 5% 5% superintelligent AI. Total killed in all 98% 30% 4% wars (including civil wars). Number killed in 30% 10% 2% the single biggest engineered pandemic. Total killed in all 30% 10% 1% nuclear wars. Number killed in 5% 1% 0.5% the single biggest nanotech accident. Number killed in 60% 5% 0.05% the single biggest natural pandemic. Total killed in all 15% 1% 0.03% acts of nuclear terrorism. Overall risk of n/a n/a 19% extinction prior to 2100 These results should be taken with a grain of salt. Non‐responses have been omitted, although some might represent a statement of zero probability rather than no opinion. 1 There are likely to be many cognitive biases that affect the result, such as unpacking bias and the availability heuristic‒‐well as old‐fashioned optimism and pessimism. In appendix A the results are plotted with individual response distributions visible. Other Risks The list of risks was not intended to be inclusive of all the biggest risks. -
1783-84 Laki Eruption, Iceland
1783-84 Laki eruption, Iceland Eruption History and Atmospheric Effects Thor Thordarson Faculty of Earth sciences, University of Iceland 12/8/2017 1 Atmospheric Effects of the 1783-84 Laki Eruption in Iceland Outline . Volcano-Climate interactions - background Laki eruption . Eruption history . Sulfur release and aerosol loading . Plume transport and aerosol dispersal . Environmental and climatic effects 12/8/2017. Concluding Remarks 2 Santorini, 1628 BC Tambora, 1815 Etna, 44 BC Lakagígar, 1783 Toba, 71,000 BP Famous Volcanic Eruptions Krakatau, 1883 Pinatubo, 1991 El Chichón, 1982 Agung, 1963 St. Helens, 1980 Major volcanic eruptions of the past 250 years Volcano Year VEI d.v.i/Emax IVI Lakagígar [Laki craters], Iceland 1783 4 2300 0.19 Unknown (El Chichón?) 1809 0.20 Tambora, Sumbawa, Indonesia 1815 7 3000 0.50 Cosiguina, Nicaragua 1835 5 4000 0.11 Askja, Iceland 1875 5 1000 0.01* Krakatau, Indonesia 1883 6 1000 0.12 Okataina [Tarawera], North Island, NZ 1886 5 800 0.04 Santa Maria, Guatemala 1902 6 600 0.05 Ksudach, Kamchatka, Russia 1907 5 500 0.02 Novarupta [Katmai], Alaska, US 1912 6 500 0.15 Agung, Bali, Indonesia 1963 4 800 0.06 Mt. St. Helens, Washington, US 1980 5 500 0.00 El Chichón, Chiapas, Mexico 1982 5 800 0.06 Mt. Pinatubo, Luzon, Philippines 1991 6 1000 — Volcano – Climate Interactions Key to Volcanic Forcing is: SO2 mass loading, eruption duration plume height replenishment aerosol production, residence time 12/8/2017 5 Volcanic Forcing: sulfur dioxide sulfate aerosols SO2 75%H2SO4+ 25%H2O clear sky 1991 Pinatubo aerosols -
Large Igneous Provinces and Mass Extinctions: an Update
Downloaded from specialpapers.gsapubs.org on April 29, 2015 OLD G The Geological Society of America Special Paper 505 2014 OPEN ACCESS Large igneous provinces and mass extinctions: An update David P.G. Bond* Department of Geography, Environment and Earth Science, University of Hull, Hull HU6 7RX, UK, and Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway Paul B. Wignall School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ABSTRACT The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capi- tanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always suffi cient recovery time between individual eruptions to negate any cumulative effect of successive fl ood basalt erup- tions. Instead, the environmental and climatic damage must be attributed to single- pulse gas effusions. It is notable that the best-constrained examples of death-by- volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO2 and SO2) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinc- tion scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. -
Modern Technology and Human Extinction
Proceedings of Informing Science & IT Education Conference (InSITE) 2016 Cite as: Schultz, R. A. (2016). Modern technology and human extinction. Proceedings of Informing Science & IT Edu- cation Conference (InSITE) 2016, 131-145. Retrieved from http://www.informingscience.org/Publications/3433 Modern Technology and Human Extinction Robert A. Schultz Woodbury University, Burbank, CA, USA [email protected] Abstract [Note: Portions of this paper were previously published in Schultz, 2014.] The purpose of this paper is to describe and explain a central property of modern technology that makes it an important potential contributor to human extinction. This view may seem strange to those who regard technology as an instrument of human growth. After discussing modern tech- nology and two important candidates for extinction, other technological candidates for serious contribution to human extinction will be examined. The saving contribution of information tech- nology is also discussed. Keywords: technology, classical technology, modern technology, information technology, gradu- al extinction, sudden extinction. Introduction Helping to further human extinction is not a feature of all technology, but rather of technology we can call modern. In this paper, modern technology is considered to be technology since the in- dustrial revolution. Its distinctive feature is that it regards everything as resources for its own processes. Serious conflicts with the ecosystems that support all life are inevitable and not easily preventable. A Very Brief History of Technology Technology can be thought of as having four stages: >> Proto-technology, early tool development before civilization, one million, possibly 2 million years old. >> The classical technology of agriculture and cities that enabled the rise of civilization, roughly 10,000 years old. -
Flood Basalt Hosted Palaeosols: Potential Palaeoclimatic Indicators of Global Climate Change
Geoscience Frontiers xxx (2013) 1e9 Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Review Flood basalt hosted palaeosols: Potential palaeoclimatic indicators of global climate change M.R.G. Sayyed* Department of Geology, Poona College (University of Pune), Camp, Pune 411 001, Maharashtra, India article info abstract Article history: Since continental sediments (in addition to the marine geological record) offer important means of Received 29 December 2012 deciphering environmental changes, the sediments hosted by the successive flows of the continental Received in revised form flood basalt provinces of the world should be treasure houses in gathering the palaeoclimatic data. 27 July 2013 Palaeosols developed on top of basalt flows are potentially ideal for palaeoenvironmental reconstructions Accepted 16 August 2013 because it is easy to determine their protolith geochemistry and also they define a definite time interval. Available online xxx The present paper summarizes the nature of the basalt-hosted palaeosols formed on the flood basalts provinces from different parts of the globe having different ages. Keywords: Ó Continental flood basalts 2013, China University of Geosciences (Beijing) and Peking University. Production and hosting by Palaeosols Elsevier B.V. All rights reserved. Weathering Palaeoclimates Global change 1. Introduction across multiple time and space scales. Such palaeoclimatic records further reveal the changes in the atmospheric chemistry and the Globally distributed climate change events affect oceanic, at- response of natural systems to the climate change as these events mospheric and terrestrial environments and Earth’s history reveals are affecting the global oceanic, atmospheric and terrestrial envi- that there were periods when the climate was significantly cooler ronments. -
Historical Biogeography
click for previous page 10 The Living Marine Resources of the Western Central Atlantic The Caribbean Plate, which occupies a models and methodologies for the explanation of central position in relation to the others, provides a the distributions of organisms. As a result, useful reference point for understanding their descriptive biogeography based on ad hoc interactions and relative motions. There are two delineation of biotic units (e.g., biogeographic fundamentally different kinds of models for its realms, regions or provinces), was generally formation and evolution. Models based on the succeeded by historical biogeography based on hypothesis of in situ origin (e.g., Weyl, 1973; phylogenetic inference and the objective search Meyerhoff and Meyerhoff, 1972; Donnelly, 1989) for areas of endemism. In an independent but suggest that the anomalously thick crust that gives nearly simultaneous development, MacArthur and the plate its identity is the result of a flood basalt event Wilson (1963, 1967) developed the theory of that occurred between the two American continents island biogeography which seeks explanations as they separated in the early Mesozoic, between 200 about the composition of island biotas that are and 165 Ma. In general, these models involve independent of phylogeny and that are of interest movement of South America and Africa (which were a on much shorter time scales. Both of these two single unit at that time) to the east-south-east with trajectories in biogeography - historical and respect to North America. The movements -
Resilience to Global Catastrophe
Resilience to Global Catastrophe Seth D. Baumi* Keywords: Resilience, catastrophe, global, collapse *Corresponding author: [email protected] Introduction The field of global catastrophic risk (GCR) studies the prospect of extreme harm to global human civilization, up to and including the possibility of human extinction. GCR has attracted substantial interest because the extreme severity of global catastrophe makes it an important class of risk, even if the probabilities are low. For example, in the 1990s, the US Congress and NASA established the Spaceguard Survey for detecting large asteroids and comets that could collide with Earth, even though the probability of such a collision was around one-in-500,000 per year (Morrison, 1992). Other notable GCRs include artificial intelligence, global warming, nuclear war, pandemic disease outbreaks, and supervolcano eruptions. While GCR has been defined in a variety of ways, Baum and Handoh (2014, p.17) define it as “the risk of crossing a large and damaging human system threshold”. This definition posits global catastrophe as an event that exceeds the resilience of global human civilization, potentially sending humanity into a fundamentally different state of existence, as in the notion of civilization collapse. Resilience in this context can be defined as a system’s capacity to withstand disturbances while remaining in the same general state. Over the course of human history, there have been several regional-scale civilization collapses, including the Akkadian Empire, the Old and New Kingdoms of Egypt, and the Mayan civilization (Butzer & Endfield, 2012). The historical collapses are believed to be generally due to a mix of social and environmental causes, though the empirical evidence is often limited due to the long time that has lapsed since these events.