Super Eruptions.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety
Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety Edited by Thomas J. Casadevall U.S. GEOLOGICAL SURVEY BULLETIN 2047 Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety held in Seattle, Washington, in July I991 @mposium sponsored by Air Line Pilots Association Air Transport Association of America Federal Aviation Administmtion National Oceanic and Atmospheric Administration U.S. Geological Survey amposium co-sponsored by Aerospace Industries Association of America American Institute of Aeronautics and Astronautics Flight Safety Foundation International Association of Volcanology and Chemistry of the Earth's Interior National Transportation Safety Board UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.Government Library of Congress Cataloging-in-Publication Data International Symposium on Volcanic Ash and Aviation Safety (1st : 1991 Seattle, Wash.) Volcanic ash and aviation safety : proceedings of the First International Symposium on Volcanic Ash and Aviation Safety I edited by Thomas J. Casadevall ; symposium sponsored by Air Line Pilots Association ... [et al.], co-sponsored by Aerospace Indus- tries Association of America ... [et al.]. p. cm.--(US. Geological Survey bulletin ; 2047) "Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety held in Seattle, Washington, in July 1991." Includes bibliographical references. -
University of Edinburgh Postgraduate Journal of Culture and the Arts Issue 05 | Autumn 2007
University of Edinburgh Postgraduate Journal of Culture and the Arts Issue 05 | Autumn 2007 Title ‘The Four Horsemen of the Greenhouse Apocalypse’: Apocalypse in the Science Fiction Novels of George Turner Author Roslyn Weaver Publication FORUM: University of Edinburgh Postgraduate Journal of Culture and the Arts Issue Number 05 Issue Date Autumn 2007 Publication Date 12/12/2007 Editors Jack Burton & Hanna Sommerseth FORUM claims non-exclusive rights to reproduce this article electronically (in full or in part) and to publish this work in any such media current or later developed. The author retains all rights, including the right to be identified as the author wherever and whenever this article is published, and the right to use all or part of the article and abstracts, with or without revision or modification in compilations or other publications. Any latter publication shall recognise FORUM as the original publisher. “The Four Horsemen of the Greenhouse Apocalypse”: Apocalypse in the Science Fiction Novels of George Turner Roslyn Weaver, (University of Wollongong) … the realities of overpopulation, ineradicable pollution, rampant nationalism, and plain entrepreneurial greed – the four horsemen of the greenhouse apocalypse – closed around the planet. - George Turner, Down There in Darkness 13 In Postmodern Apocalypse , Richard Dellamora writes of a “pervasive sense of unease in contemporary existence”, arguing that the “lack of confidence in the possibility of shaping history in accord with human desire(s) provides the bass line of culture – political, economic, and aesthetic” (xi). More than a decade after Dellamora’s remarks, a collective dread evident in literature and film has not abated; rather, it has perhaps intensified. -
Flood Basalts and Glacier Floods—Roadside Geology
u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1. -
A Universal Severity Classification for Natural Disasters H. Jithamala Caldera1 and S. C. Wirasinghe2 1Department of Civil Engin
A Universal Severity Classication for Natural Disasters H. Jithamala Caldera ( [email protected] ) University of Calgary Schulich School of Engineering https://orcid.org/0000-0001-8896-7846 S. C. Wirasinghe University of Calgary Schulich School of Engineering Research Article Keywords: Universal Disaster Severity Classication Scheme, Global Disaster Severity Scale, Universal Standard Severity Index System, Extreme Natural Events, Disaster Denitions, Impact Assessment Posted Date: May 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-333435/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 1 A Universal Severity Classification for Natural Disasters 2 H. Jithamala Caldera1 and S. C. Wirasinghe2 3 1Department of Civil Engineering, University of Calgary, Calgary, Alberta, Canada, [email protected], 4 0000-0001-8896-7846 5 2Department of Civil Engineering, University of Calgary, Calgary, Alberta, Canada, 0000-0001-5739-1290 6 ABSTRACT 7 The magnitude of a disaster’s impact cannot be easily assessed because there is no global method that provides 8 real magnitudes of natural disaster severity levels. Therefore, a new universal severity classification scheme for natural 9 disasters is developed and is supported by data. This universal system looks at the severity of disasters based on the 10 most influential impact factor and gives a rating from zero to ten; zero indicates no impact and ten is a world-wide 11 devastation. This universal system is for all types of natural disasters, from lightning strikes to super volcanic eruptions 12 and everything in between, that occur anywhere in the world at any time. -
(2000), Voluminous Lava-Like Precursor to a Major Ash-Flow
Journal of Volcanology and Geothermal Research 98 (2000) 153–171 www.elsevier.nl/locate/jvolgeores Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado O. Bachmanna,*, M.A. Dungana, P.W. Lipmanb aSection des Sciences de la Terre de l’Universite´ de Gene`ve, 13, Rue des Maraıˆchers, 1211 Geneva 4, Switzerland bUS Geological Survey, 345 Middlefield Rd, Menlo Park, CA, USA Received 26 May 1999; received in revised form 8 November 1999; accepted 8 November 1999 Abstract The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (ϳ5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (Ͼ200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow- layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. -
Confronting the Threat of Nuclear Winter Seth D
Confronting the Threat of Nuclear Winter Seth D. Baum Global Catastrophic Risk Institute http://sethbaum.com * http://gcrinstitute.org Futures 72: 69-79. This version 14 October 2015. Abstract Large-scale nuclear war sends large quantities of smoke into the stratosphere, causing severe global environmental effects including surface temperature declines and increased ultraviolet radiation. The temperature decline and the full set of environmental effects are known as nuclear winter. This paper surveys the range of actions that can confront the threat of nuclear winter, both now and in the future. Nuclear winter can be confronted by reducing the probability of nuclear war, reducing the environmental severity of nuclear winter, increasing humanity’s resilience to nuclear winter, and through indirect interventions that enhance these other interventions. While some people may be able to help more than others, many people—perhaps everyone across the world—can make a difference. Likewise, the different opportunities available to different people suggests personalized evaluations of nuclear winter, and of catastrophic threats more generally, instead of a one-size-fits-all approach. Keywords: catastrophic threats, global catastrophic risk, nuclear war, nuclear winter, risk reduction 1. Introduction The explosion of nuclear weapons causes enormous fireballs, burning everything in the vicinity. Most of the ensuing smoke rises past the clouds, into the stratosphere, where it spreads around the world and remains for a time on the order of ten to twenty years. A large enough nuclear war would send up so much smoke that the global environment would be fundamentally altered. Surface temperatures and precipitation would decline, while ultraviolet radiation increases. -
GEOG 442 – the Great Extinctions Evolution Has Spawned An
GEOG 442 – The Great Extinctions Evolution has spawned an incredible diversity of lineages from nearly the beginning of the planet itself to the present. Speciation often results from the isolation of a population of organisms, which then evolve along their own trajectories, depending on such factors as founder effect, genetic drift, and natural selection in environments that are different to some extent from the range of environments from which they've been isolated. Speciation can be allopatric or sympatric. Once a new species forms, it is endemic to its source region. It may then be later able to escape its source region, migrating into new regions and even becoming cosmopolitan. Even a cosmopolitan species is subject to environmental change out of its environmental envelope and to competition from other species. This can then set off a process of decline and local extirpations across its range, resulting in disjunct distribution, eventually recreating an endemic distribution in its last redoubt before its final extinction. Extinction, then, is the normal fate of species. If a species is lucky, it may go extinct by dint of having evolved into one or more daughter lineages that are so divergent from the parent that we consider the parent extinct. Many species are not lucky: Their last lineage fades out. Extinction is normal. We can talk about the background extinction rate, the normal loss of species and lineages through time. The average duration of species is somewhere between 1 and 13 million years, depending on the kind of critter we're talking about. Mammal species tend to last about 1-2 million years; unicellular dinoflagellate algae are on the other end at 13 million years. -
Kata Pengantar
KATA PENGANTAR Kegiatan ini merupakan program dari Badan Penanggulangan Bencana Daerah Kabupaten Wonosobo, dengan mengambil tema sebagai pembuatan jalur evakuasi bencana erupsi Gunungapi Sindoro di Kecamatan Kejajar. Laporan ini merupakan laporan akhir yang berisi materi mengenai latar belakang, maksud dan tujuan, sasasaran, keluaran, tinjauan pustaka serta metode penelitian, serta kajian analisis jalur evakuasi bencana Gunungapi Sindoro. Pada kegiatan ini selain survey dalam penentuan jalur evakuasi pada pemukiman di desa-desa di lereng Gunungapi Sindoro, juga digunakan teknik wawancara. Metode wawancara ini dipergunakan untuk mengetahui kesiapsiagaan masyarakat, selain itu masyarakat memberikan peran aktif dalam rangka mitigasi bencana khususnya bencana erupsi Gunungapi Sindoro. Hasil yang diperoleh bahwa, Desa Buntu, Desa Sigedang, Desa Kreo, serta Desa Kejajar merupakan daerah-derah di lereng gunungapi Sindoro yang memiliki potensi ancaman tinggi hingga sedang. Penentuan titik kumpul beradarkan aksesibilitas, tersedianya fasilitas serta daya tampung yang relatif masal. Semoga laporan ini dapat digunkan sebagai pertimbangan dalam pemasangan jalur evakuasi serta penempatan lokasi titik kumpul. Atas saran dan nasihatnya kami ucapkan terima kasih. Tim Penyusun ii DAFTAR ISI KATA PENGANTAR ii DAFTAR ISI iii DAFTAR GAMBAR v DAFTAR TABEL vii BAB I PENDAHULUAN 1 1.1. Latar Belakang 1 1.2. Tujuan Kegiatan 5 1.3. Sasaran Kegiatan 6 1.4. Output Kegiatan 6 1.5. Lingkup Kegiatan 7 1.6. Referensi Hukum 7 BAB II TINJAUAN PUSTAKA 8 2.1. GunungApi 8 2.2. Erupsi Gunung Berapi 13 2.3. Pengelolaan Bencana 15 2.4. Mitigasi Bencana 19 2.5. Jalur Evakuasi Bencana 20 2.6. Sistem Informasi Geografis 22 BAB III METODE PENELITIAN 23 3.1. -
Challenge Your Adrenaline by Taking One of These Volcano Indonesia Tours
Challenge Your Adrenaline by Taking One of These Volcano Indonesia Tours As an archipelago, Indonesia lays on the meeting of several tectonic plates. Geologically, it is the reason why Indonesia has many volcanoes stretched from the West to the East. Though it sounds worrying to remember how dangerous a volcano can be, the area can be the perfect place to explore instead. Volcanoes are known for its fertile land and scenic view. Apparently, volcano Indonesia tour can be found across the country and below are six of the best destinations. 1. Mount Rinjani, Lombok Lombok Island on the Eastern Indonesia has the magnificent Mount Rinjani and its craters. This active volcano has three craters from its past eruption called the Kelimutu Lake. Mount Rinjani is the second highest volcano in Indonesia after Mount Kerinci in Sumatera. The lake has a magical view because each crater has different colors throughout the day. From afar, each of the craters would be seen to have green, blue, and red color. The local people have their own legend of the color of the craters. However, the color change might potentially be the result of the change in oxidation and reduction of the fluid in the craters. It may take around two days and one night to climb the mountain seriously and professionally. However, there are Indonesia tour packages that will offer an easier hiking option for beginners. 2. Mount Batur, Bali Mount Batur in Bali might be the easiest volcano to climb in the Indonesia tour list. In just less than three hours, you can get to the top of this active volcano. -
A New Effort to Achieve World
The Risk of Nuclear Winter The Risk of Nuclear Winter By Seth Baum Since the early 1980s, the world has known that a large nuclear war could cause severe global environmental effects, including dramatic cooling of surface temperatures, declines in precipitation, and increased ultraviolet radiation. The term nuclear winter was coined specifically to refer to cooling that result in winter-like temperatures occurring year-round. Regardless of whether such temperatures are reached, there would be severe consequences for humanity. But how severe would those consequences be? And what should the world be doing about it? To the first question, the short answer is nobody knows. The total human impacts of nuclear winter are both uncertain and under-studied. In light of the uncertainty, a risk perspective is warranted that considers the breadth of possible impacts, weighted by their probability. More research on the impacts would be very helpful, but we can meanwhile make some general conclusions. That is enough to start answering the second question, what we should do. In regards to what we should do, nuclear winter has some interesting and important policy implications. Today, nuclear winter is not a hot topic but this was not always the case: it was international headline news in the 1980s. There were conferences, Congressional hearings, voluminous scientific research, television specials, and more. The story is expertly captured by Lawrence Badash in his book A Nuclear Winter’s Tale.1 Much of the 1980s attention to nuclear winter was driven by the enthusiastic efforts of Carl Sagan, then at the height of his popularity. -
Protecting an Icon Managing Sources of Diffuse Nutrient Inflow to Lake Taupo, New Zealand Abstract Introduction Mandate for Acti
Diffuse Pollution Conference, Dublin 2003 1C Water Resources Management PROTECTING AN ICON MANAGING SOURCES OF DIFFUSE NUTRIENT INFLOW TO LAKE TAUPO, NEW ZEALAND Tony Petch1, Justine Young1, Bruce Thorrold2 and Bill Vant1 1Environment Waikato, PO Box 4010, Hamilton East, New Zealand 2Dexcel Ltd, Private Bag 3221, Hamilton ABSTRACT Lake Taupo is a large, near pristine lake in New Zealand, highly valued for its clear blue waters. Increasing loads of nitrogen from the surrounding catchment threaten lake water quality. A management proposal is presented that promotes a sustainable development pathway for the lake community thereby protecting the lake for all New Zealanders. A community change process to protect the environmental, economic, cultural and spiritual values of a lake is described Keywords: Community, economy, Lake Taupo, land use, management, nutrients, policy, water quality INTRODUCTION Lake Taupo is the largest lake in New Zealand (area 620 km2, mean depth 95m). It is highly valued for its crystal blue water and dramatic vistas. These features provide the basis of an international tourist mecca and a world-class trout fishery as well as an important local recreation area and preferred retirement location. The lake is also important spiritually and culturally to the local indigenous people, Ngati Tuwharetoa. Lake Taupo’s excellent water quality is derived from extremely low levels of plant nutrients and phytoplankton. Unlike many other lakes, nitrogen availability rather than phosphorus limits phytoplankton growth in Taupo. Increased nutrient flows, especially nitrogen, from intensifying rural land use and urban growth in the catchment promotes algal and phytoplankton growth and threatens water clarity and the excellent water quality of the lake. -
Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: the Indonesian Example
geosciences Review Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example Mukhamad N. Malawani 1,2, Franck Lavigne 1,3,* , Christopher Gomez 2,4 , Bachtiar W. Mutaqin 2 and Danang S. Hadmoko 2 1 Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, UMR 8591, 92195 Meudon, France; [email protected] 2 Disaster and Risk Management Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] (C.G.); [email protected] (B.W.M.); [email protected] (D.S.H.) 3 Institut Universitaire de France, 75005 Paris, France 4 Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Kobe City 658-0022, Japan * Correspondence: [email protected] Abstract: This paper discusses the relations between the impacts of volcanic eruptions at multiple- scales and the related-issues of disaster-risk reduction (DRR). The review is structured around local and global impacts of volcanic eruptions, which have not been widely discussed in the literature, in terms of DRR issues. We classify the impacts at local scale on four different geographical features: impacts on the drainage system, on the structural morphology, on the water bodies, and the impact Citation: Malawani, M.N.; on societies and the environment. It has been demonstrated that information on local impacts can Lavigne, F.; Gomez, C.; be integrated into four phases of the DRR, i.e., monitoring, mapping, emergency, and recovery. In Mutaqin, B.W.; Hadmoko, D.S. contrast, information on the global impacts (e.g., global disruption on climate and air traffic) only fits Review of Local and Global Impacts the first DRR phase.