Emerging Energy-Efficiency and Carbon Dioxide Emissions-Reduction Technologies for the Iron and Steel Industry

Total Page:16

File Type:pdf, Size:1020Kb

Emerging Energy-Efficiency and Carbon Dioxide Emissions-Reduction Technologies for the Iron and Steel Industry LBNL-6106E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Ali Hasanbeigi, Lynn Price China Energy Group Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Marlene Arens Fraunhofer Institute for Systems and Innovation Research (ISI) January 2013 This work was supported by the China Sustainable Energy Program of the Energy Foundation and Dow Chemical Company (through a charitable contribution) through the Department of Energy under contract No.DE- AC02-05CH11231. i Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. ii Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Ali Hasanbeigi a, Marlene Arens b, Lynn Price a a China Energy Group, Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A. b Fraunhofer Institute for Systems and Innovation Research (ISI), Karlsruhe, Germany. Abstract Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy- efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information. iii iv Contents Abstract ...........................................................................................................................................iii 1. Introduction .................................................................................................................................. 1 2. Description of Iron and Steel Production ..................................................................................... 5 2.1. Iron and Steel Production Process and Energy Use .............................................................. 5 2.1.1. Raw Materials ................................................................................................................. 6 2.1.2. Ironmaking ...................................................................................................................... 6 2.1.3. Steelmaking ..................................................................................................................... 7 2.1.4. Casting, Rolling, and Finishing ....................................................................................... 8 2.2. CO2 Impact of Iron and Steel Production .............................................................................. 8 3. Emerging Energy-efficiency and CO2 Emissions Reduction Technologies .............................. 10 3.1. Emerging Agglomeration Technology ................................................................................ 10 3.1.1. Use of Biomass in the Sintering Process ....................................................................... 10 3.2. Emerging Coke-Making Technologies ............................................................................... 12 3.2.1. Single-chamber-system Coking Reactors ..................................................................... 12 3.2.2. Coke Oven Under-firing with Advanced Diagnostics and Control .............................. 13 3.3. Emerging Technologies for Ironmaking Using Blast Furnace ............................................ 15 3.3.1. Hot Oxygen Injection .................................................................................................... 15 3.3.2. Blast Furnace Optimization Using Computational Fluid Dynamics Modeling ............ 16 3.3.3. Blast Furnace Optimization Using X-ray Diffraction Analytical Technique ............... 18 3.3.4. Blast Furnace Heat Recuperation .................................................................................. 20 3.3.5. Plasma Blast Furnace .................................................................................................... 21 3.3.6. Blast Furnace Slag Heat Recovery ................................................................................ 23 3.3.7. Charging Carbon Composite Agglomerates in Blast Furnace ...................................... 24 3.4. Alternative Emerging Ironmaking Technologies ................................................................ 26 3.4.1. COREX® Process .......................................................................................................... 26 3.4.2. FINEX® process ............................................................................................................ 28 3.4.3. Tecnored ........................................................................................................................ 30 3.4.4. ITmk3® Ironmaking Process ......................................................................................... 31 3.4.5. Paired Straight Hearth Furnace ..................................................................................... 33 3.4.6. Coal-Based HYL Process- A Syngas-based DRI Plant ................................................ 35 v ® 3.4.7. Coal-Based MIDREX Process .................................................................................... 36 3.4.8. Fine Ore Reduction in Circulating and Bubbling Fluidized Beds ................................ 38 3.4.9. Cyclone Converter Furnace ........................................................................................... 40 3.4.10. Producing Iron by Electrolysis of Iron Ore (Molten Oxide Electrolysis) ................... 41 3.4.11. Suspension Hydrogen (or H2 containing Gaseous mixtures) Reduction of Iron Oxide Concentrate.............................................................................................................................. 44 3.4.12. Ironmaking using Biomass and Waste Oxides ............................................................ 46 3.5. Emerging Technologies for Steelmaking Shops ................................................................. 49 3.5.1. Sensible Heat Recovery from Electric Arc Furnace Off Gas ........................................ 49 3.5.2. Electrochemical Removal of Zinc from Steel Scrap ..................................................... 51 3.5.3. Continuous Horizontal Sidewall Scrap Charging ......................................................... 53 3.5.4. New Scrap-Based Steelmaking Process Using Predominantly Primary Energy .......... 54 3.5.5. ECOARCTM ................................................................................................................... 55 3.5.6. Optimization of BOF and EAF Post Combustion Using CFD ..................................... 57 3.5.7. Improving the Energy Efficiency of EAF through Laser-based Optimization of Post Combustion ............................................................................................................................. 58 3.5.8. Model-based Steel Temperature Measurement for Electric Arc Furnaces ................... 59 3.5.9. In-Situ Real-Time Measurement of Melt Constituents ................................................. 60 3.5.10. Injection of Plastic Waste in Blast Furnaces ............................................................... 63 3.5.11. Injection of Plastic Waste in Electric Arc Furnaces .................................................... 65 3.5.12. Use of Waste Tires in Electric Arc
Recommended publications
  • Society, Materials, and the Environment: the Case of Steel
    metals Review Society, Materials, and the Environment: The Case of Steel Jean-Pierre Birat IF Steelman, Moselle, 57280 Semécourt, France; [email protected]; Tel.: +333-8751-1117 Received: 1 February 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability, scarcity), energy resources, and generation of by-products, i.e., the circular economy, the anthropogenic iron mine, and the energy transition. The paper also deals with emissions to air (dust, Particulate Matter, heavy metals, Persistant Organics Pollutants), water, and soil, i.e., with toxicity, ecotoxicity, epidemiology, and health issues, but also greenhouse gas emissions, i.e., climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed, stressing areas where knowledge is still lacking. In the face of all these issues, technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel, energy conservation, air/water/soil emissions) and in line with present environmental regulations; on the other hand, there are important hanging issues, such as the generation of mine tailings (and tailings dam failures), the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050, at least in the EU), and the emission of fine PM, which WHO correlates with premature deaths. Moreover, present regulatory levels of emissions will necessarily become much stricter.
    [Show full text]
  • Elegancy D5.2.5
    ACT Project Number: 271498 Project name: ELEGANCY Project full title: Enabling a Low-Carbon Economy via Hydrogen and CCS ERA-Net ACT project Starting date: 2017-08-31 Duration: 36 months D5.2.5 Evaluation of the potential for hydrogen and CCS in the decarbonization of the Dutch steel industry Date: 2020-08-31 Organization name of lead participant for this deliverable: Utrecht University ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), BMWi (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco, Equinor and Total, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712. Dissemination Level PU Public x CO Confidential, only for members of the consortium (including the Commission Services) Page iii Deliverable number: D5.2.5 Deliverable title: Evaluation of the potential for hydrogen and CCS in the decarbonization of the Dutch steel industry Work package: WP5 Case Studies Lead participant: UU Authors Name Organisation E-mail Lukas Weimann* UU [email protected] Matteo Gazzani UU [email protected] Gert Jan Kramer UU Joep Matser UU Annika Boldrini UU *Mark lead author with asterisk Keywords Integrated steelworks, decarbonization of steel industry, process optimization, Hisarna, electric- arc furnace, carbon capture and storage, hydrogen. Abstract The iron and steel industry accounts for 5 % of worldwide CO2 emissions. With 13 MtCO2eq annually, TATA Steel, which employs the traditional blast furnace – basic oxygen furnace steel making route, is one of the largest single point emitters in the Netherlands (and EU). Given the role of steel in present and future society, decarbonizing the steel industry is of paramount importance for a CO2 net-zero society.
    [Show full text]
  • National Register of Historic Places Multiple Property
    NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple
    [Show full text]
  • The White Book of STEEL
    The white book of STEEL The white book of steel worldsteel represents approximately 170 steel producers (including 17 of the world’s 20 largest steel companies), national and regional steel industry associations and steel research institutes. worldsteel members represent around 85% of world steel production. worldsteel acts as the focal point for the steel industry, providing global leadership on all major strategic issues affecting the industry, particularly focusing on economic, environmental and social sustainability. worldsteel has taken all possible steps to check and confirm the facts contained in this book – however, some elements will inevitably be open to interpretation. worldsteel does not accept any liability for the accuracy of data, information, opinions or for any printing errors. The white book of steel © World Steel Association 2012 ISBN 978-2-930069-67-8 Design by double-id.com Copywriting by Pyramidion.be This publication is printed on MultiDesign paper. MultiDesign is certified by the Forestry Stewardship Council as environmentally-responsible paper. contEntS Steel before the 18th century 6 Amazing steel 18th to 19th centuries 12 Revolution! 20th century global expansion, 1900-1970s 20 Steel age End of 20th century, start of 21st 32 Going for growth: Innovation of scale Steel industry today & future developments 44 Sustainable steel Glossary 48 Website 50 Please refer to the glossary section on page 48 to find the definition of the words highlighted in blue throughout the book. Detail of India from Ptolemy’s world map. Iron was first found in meteorites (‘gift of the gods’) then thousands of years later was developed into steel, the discovery of which helped shape the ancient (and modern) world 6 Steel bEforE thE 18th cEntury Amazing steel Ever since our ancestors started to mine and smelt iron, they began producing steel.
    [Show full text]
  • Electrons, Life and the Evolution of Earth's Chemical Cycles
    Electrons, Life and the Evolution of Earth’s Chemical Cycles OCN 623 – Chemical Oceanography 23 April 2013 Adaption of Brian Glazer lecture (based on Falkowski and Godfrey (2008) Phil. Trans. R. Soc. B, 363: 2705-2716) © 2013 F.J. Sansone Outline Earth’s geological, geochemical and biological co- evolution since formation - Early Earth - Origins of life - The great oxidation event - Linkage between global O and N cycles - Alternate explanations for the great oxidation event - The rise of oxygen and the evolution of life - The Phanerozoic How Does the Earth Work as a Biosphere? All organisms derive energy for growth and maintenance by moving electrons from a substrate to a product All substrates and products must ultimately be recycled All metabolic processes on Earth are prokaryotic and were developed in the Archean and/or Proterozoic Eons Earth’s Geological, Geochemical and Biological Co-evolution Since Formation Earth, ~3.5 Ga Ago • Earth cools to <100˚C • Shallow sea environment – Land covered by low egg- shaped hills and pillow lavas – Silt layers – Scattered volcanic islands and evaporite lagoons • Tides higher – Moon closer to Earth, days shorter • Atmosphere –CO2-rich, no O2 – UV-drenched landscape Faint Sun Paradox High atmospheric CO2 and CH4 important in early Earth -- balanced weak Sun to maintain temp Recycling of Atmospheric CO2 Liquid water on early Earth allowed a hydrologic cycle, carbonate and silicate mineral weathering to develop: 2+ - CaCO3 + CO2 + H2O = Ca + 2HCO3 2+ - CaSiO3 +2CO2 +3H2O = Ca + 2HCO3 + H4SIO4 Uptake
    [Show full text]
  • Is Extraterrestrial Organic Matter Relevant to the Origin of Life on Earth?
    IS EXTRATERRESTRIAL ORGANIC MATTER RELEVANT TO THE ORIGIN OF LIFE ON EARTH? D. C. B. WHITTET Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A. (Received 19 August 1996) Abstract. I review the relative importance of internal and external sources of prebiotic molecules on Earth at the time of life's origin 3.7 Gyr ago. The ef®ciency of synthesis in the Earth's atmosphere was critically dependent on its oxidation state. If the early atmosphere was non-reducing and CO2- dominated, external delivery might have been the dominant source. Interplanetary dust grains and micrometeorites currently deliver carbonaceous matter to the Earth's surface at a rate of 3 5 7 10 kg/yr (equivalent to a biomass in 2 Gyr), but this may have been as high as 5 10 kg/yr (a biomass in only 10 Myr) during the epoch of late bombardment. Much of the incoming material is in the form of chemically inactive kerogens and amorphous carbon; but if the Earth once had a dense (10-bar) atmosphere, small comets rich in a variety of prebiotic molecules may have been suf®ciently air-braked to land non-destructively. Lingering uncertainties regarding the impact history of the Earth and the density and composition of its early atmosphere limit our ability to draw ®rm conclusions. 1. Introduction In at least one sense, a connection between the Universe at large and life in our small corner of it is inevitable. The hydrogen, carbon, nitrogen, oxygen, and other elements that make up our bodies and other living things were created billions of years ago in the interiors of stars and, in the case of hydrogen, in the the Big Bang itself (see Trimble, 1997, in this volume for an eloquent review).
    [Show full text]
  • Steel Pickling: a Profile
    December 1993 Steel Pickling: A Profile Draft Report Prepared for John Robson U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Cost and Economic Impact Section Research Triangle Park, NC 27711 EPA Contract Number 68-D1-0143 RTI Project Number 35U-5681-58 DR EPA Contract Number RTI Project Number 68-D1-0143 35U-5681-58 DR Steel Pickling: A Profile Draft Report December 1993 Prepared for John Robson U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Cost and Economic Impact Section Research Triangle Park, NC 27711 Prepared by Tyler J. Fox Craig D. Randall David H. Gross Center for Economics Research Research Triangle Institute Research Triangle Park, NC 27709 TABLE OF CONTENTS Section Page 1 Introduction .................. 1-1 2 The Supply Side of the Industry ......... 2-1 2.1 Steel Production .............. 2-1 2.2 Steel Pickling .............. 2-3 2.2.1 Hydrochloric Acid Pickling ..... 2-5 2.2.1.1 Continuous Pickling .... 2-8 2.2.1.1.1 Coils ...... 2-8 2.2.1.1.2 Tube, Rod, and Wire ...... 2-9 2.2.1.2 Push-Pull Pickling ..... 2-10 2.2.1.3 Batch Pickling ....... 2-11 2.2.1.4 Emissions from Steel Pickling 2-11 2.2.2 Acid Regeneration of Waste Pickle Liquor .............. 2-12 2.2.2.1 Spray Roaster Regeneration Process .......... 2-13 2.3 Types of Steel .............. 2-14 2.3.1 Carbon Steels ............ 2-15 2.3.2 Alloy Steels ............ 2-15 2.3.3 Stainless Steels .......... 2-15 2.4 Costs of Production ...........
    [Show full text]
  • Hopewell Village
    IRONMAKING IN EARLY AMERICA the Revolutionary armies, is representative of (such as Valley Forge) to be made into the tougher the hundreds of ironmaking communities that and less brittle wrought iron. This was used to Hopewell In the early days of colonial America, iron tools supplied the iron needs of the growing nation. make tools, hardware, and horseshoes. and household items were brought over from Europe by the settlers or imported at a high cost. Until surpassed by more modern methods, cold- HOPEWELL FURNACE Village The colonists, early recognizing the need to manu­ blast charcoal-burning furnaces, such as that NATIONAL HISTORIC SITE • PENNSYLVANIA facture their own iron, set up a number of iron­ at Hopewell, supplied all the iron. These furnaces In an age when most businesses were operated by works, notably at Falling Creek, Va., and Saugus, consumed about 1 acre of trees a day for fuel, one or two men in a shop, Hopewell employed at Mass. Operations gradually spread throughout so they had to be located in rural areas close to least 65 men, with some responsible for two or the colonies, and by the end of the 1700's, south­ a timber supply. more jobs. As the nearest town was many miles eastern Pennsylvania had become the industry's away, the ironmaster built a store to supply his center. Hopewell Village, founded by Mark Bird Since the pig iron produced by these furnaces workers, many of whom lived in company-owned in 1770 in time to supply cannon and shot for had a limited use, much of it was sent to forges homes.
    [Show full text]
  • Life in the Outer Solar System Jupiter
    Life in the Outer Solar System Jupiter Big R = 11R⊕ Massive M = 300 M⊕ = 2.5 all the rest Thick Atmosphere Mostly H2, He But also more complex molecules Colors, storms Like Miller - Urey Life in Jupiter Atmosphere? Sagan-Salpeter, etc. Sinkers (Plankton) Floaters (Fish) Hunters (Fish) Galileo Results on Jupiter Reached Jupiter Dec. 1995 Sent probe into Jupiter’s atmosphere at 100,000 mile/hour Decelerated at 230 g Lasted for 57 min. Found: Strong winds Turbulence, little lightning Life less likely? Surprise: Little or no H2O May have entered in an unusual place (fewer clouds) Europa (Moon of Jupiter) Surface: Fractured Ice Subsurface Oceans? (Heated from Inside) Close-up of “ice floes” Galileo - Jupiter’s Moons http://www.jpl.nasa.gov/galileo/index.html Europa has a (THIN!) atmosphere UV H H H O=O T hin O O2 H2O ATM Pressure ~ 10–11 Earth More evidence for resurfacing along cracks by “ice geysers” fluid ice or liquid water Organic molecules on Callisto & Ganymede, maybe Europa? Saturn • Big (9.4 R⊕) • Massive (95 M⊕) • Year 29.5 years • Day 0.43 days • Composition similar to Jupiter Titan • Moon of Saturn • Diameter ~0.4 Earth • Atmospheric Pressure = 1.5 × Earth • 85% Nitrogen BUT • Cold (~90 K) • Reducing atmosphere • Haze • Lab for prebiotic chemistry The Cassini-Huygens Mission • Launched 10/13/97 • Arrived Saturn 7/2004 • Cassini studies – Saturn – Moons • Huygens – Dropped onto Titan – Study atmosphere – Surface CASSINI SPACECRAFT Huygens Probe • Released from Cassini • Slowed by heat shield • Parachute deploys • Soft landing • Sample
    [Show full text]
  • Ironmaking Process Alternatives Screening Study, Volume I
    Ironmaking Process Alternatives Screening Study Volume I: Summary Report ORE TO CONCENTRATOR IRON ORE MINE SLURRY ORE BENEFICIATION PIPELINE CONCENTRATOR CONCENTRATE SLURRY ELECTRIC PELLET RECEIVING, PELLET POWER STOCKPILE DEWATERING PLANT (50% FROM COAL, 50% FROM N.G.) DIRECT REDUCTION PLANTS NATURAL GAS EAF MELTING NATURAL GAS DRI PRODUCTION STEEL TO PORT SLABS SLAB LMFs CASTER SLAB VACUUM SHIPPING DEGASSING October 2000 LG Job No. 010529.01 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Contents Volume I: Ironmaking Alternative Study Executive Summary...............................................................................1 Study Scope and Methodology............................................................2
    [Show full text]
  • What a Blast Furnace Is and How It Works
    VOLUME II SATURDAY, NOVEMBER I, 1902 NUMBER 18 What a Blast Furnace Is and How It Works Popular Article for the Scientifically Uneducated on the Parts of a Furnace and How Pig Iron Is Made. 1 HE following article on the construc- may be accepted as an accurate statement of how tion and operations of blast furnaces pig iron is made. The editor wishes to take this was written especially for Camp and opportunity to thank these gentlemen for their Plant Mr. A of the by Harry Deuel, painstaking and careful work. Engineering Department of the Min- have articles nequa Works. It was afterwards Arrangements been madefor other carefully revised, and approved in all in "popular," though accurate, form, descriptive details by Mr R. H. Lee, superin- of other departments of the coal, coke, iron and tendent of the Blast Furnace Department, and steel industry. " Boiler House. Engine House. Furnace Stack. Stoves. Blast furnace B. Blast Furnace "A," Minnequa Steel Works, Pueblo. This view well illustrates the different external parts of "A" Furnace of which, except for minor modifica- tions, "D," "E" and "F" are duplicates Each of these furnaces is 20 feet x 95 feet, is fitted with automatic skip hoists and with the very b st and most modern equipment. This vi-w was taken, however, before the ore. coke and limestone bins, from which the skip is now automatically loaded, were installed. There are four stoves to each furnace. 21 feet in diameter by 106 feet high. Each of the tall draft stacks is 12 feet 6 inches in diameter in the clear, by 210 feet high.
    [Show full text]
  • Using Cooled Mirror Hygrometers to Optimize Cold & Hot Blast Furnace
    Application Note Using Cooled Mirror Hygrometers to optimize Cold & Hot Blast Furnace processes Application Background The purpose of a blast furnace is to chemically reduce and physically convert iron oxides into liquid iron. The blast furnace is a huge, steel stack lined with brick. Iron ore, coke and limestone are dumped into the top, and preheated “hot blast” air is blown into the bottom. The raw materials gradually descend to the bottom of the furnace where they become the final products of liquid slag and liquid iron. These liquid products are drained from the furnace at regular intervals. The hot air that was blown into the bottom of the furnace ascends to the top in 6 to 8 seconds after going through numerous chemical reactions. These hot gases exit the top of the blast furnace and proceed through gas cleaning equipment where Cold Blast, Hot blast & Stoves particulate matter is removed from the gas and the gas is cooled. This gas has a considerable energy value so it is burned as a fuel in the "hot blast stoves" which are used to preheat the air entering the blast furnace to become "hot blast". Any of the gas not burned in the stoves is sent to the boiler house and is used to generate steam which turns a turbo blower that generates the compressed air known as "cold blast" that comes to the stoves. Why is Moisture Critical? This process can be optimized by proper control of the flame temperature, which is in turn affected by the moisture content of the blast air.
    [Show full text]