LBNL-6106E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Ali Hasanbeigi, Lynn Price China Energy Group Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Marlene Arens Fraunhofer Institute for Systems and Innovation Research (ISI) January 2013 This work was supported by the China Sustainable Energy Program of the Energy Foundation and Dow Chemical Company (through a charitable contribution) through the Department of Energy under contract No.DE- AC02-05CH11231. i Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. ii Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Ali Hasanbeigi a, Marlene Arens b, Lynn Price a a China Energy Group, Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A. b Fraunhofer Institute for Systems and Innovation Research (ISI), Karlsruhe, Germany. Abstract Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy- efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information. iii iv Contents Abstract ...........................................................................................................................................iii 1. Introduction .................................................................................................................................. 1 2. Description of Iron and Steel Production ..................................................................................... 5 2.1. Iron and Steel Production Process and Energy Use .............................................................. 5 2.1.1. Raw Materials ................................................................................................................. 6 2.1.2. Ironmaking ...................................................................................................................... 6 2.1.3. Steelmaking ..................................................................................................................... 7 2.1.4. Casting, Rolling, and Finishing ....................................................................................... 8 2.2. CO2 Impact of Iron and Steel Production .............................................................................. 8 3. Emerging Energy-efficiency and CO2 Emissions Reduction Technologies .............................. 10 3.1. Emerging Agglomeration Technology ................................................................................ 10 3.1.1. Use of Biomass in the Sintering Process ....................................................................... 10 3.2. Emerging Coke-Making Technologies ............................................................................... 12 3.2.1. Single-chamber-system Coking Reactors ..................................................................... 12 3.2.2. Coke Oven Under-firing with Advanced Diagnostics and Control .............................. 13 3.3. Emerging Technologies for Ironmaking Using Blast Furnace ............................................ 15 3.3.1. Hot Oxygen Injection .................................................................................................... 15 3.3.2. Blast Furnace Optimization Using Computational Fluid Dynamics Modeling ............ 16 3.3.3. Blast Furnace Optimization Using X-ray Diffraction Analytical Technique ............... 18 3.3.4. Blast Furnace Heat Recuperation .................................................................................. 20 3.3.5. Plasma Blast Furnace .................................................................................................... 21 3.3.6. Blast Furnace Slag Heat Recovery ................................................................................ 23 3.3.7. Charging Carbon Composite Agglomerates in Blast Furnace ...................................... 24 3.4. Alternative Emerging Ironmaking Technologies ................................................................ 26 3.4.1. COREX® Process .......................................................................................................... 26 3.4.2. FINEX® process ............................................................................................................ 28 3.4.3. Tecnored ........................................................................................................................ 30 3.4.4. ITmk3® Ironmaking Process ......................................................................................... 31 3.4.5. Paired Straight Hearth Furnace ..................................................................................... 33 3.4.6. Coal-Based HYL Process- A Syngas-based DRI Plant ................................................ 35 v ® 3.4.7. Coal-Based MIDREX Process .................................................................................... 36 3.4.8. Fine Ore Reduction in Circulating and Bubbling Fluidized Beds ................................ 38 3.4.9. Cyclone Converter Furnace ........................................................................................... 40 3.4.10. Producing Iron by Electrolysis of Iron Ore (Molten Oxide Electrolysis) ................... 41 3.4.11. Suspension Hydrogen (or H2 containing Gaseous mixtures) Reduction of Iron Oxide Concentrate.............................................................................................................................. 44 3.4.12. Ironmaking using Biomass and Waste Oxides ............................................................ 46 3.5. Emerging Technologies for Steelmaking Shops ................................................................. 49 3.5.1. Sensible Heat Recovery from Electric Arc Furnace Off Gas ........................................ 49 3.5.2. Electrochemical Removal of Zinc from Steel Scrap ..................................................... 51 3.5.3. Continuous Horizontal Sidewall Scrap Charging ......................................................... 53 3.5.4. New Scrap-Based Steelmaking Process Using Predominantly Primary Energy .......... 54 3.5.5. ECOARCTM ................................................................................................................... 55 3.5.6. Optimization of BOF and EAF Post Combustion Using CFD ..................................... 57 3.5.7. Improving the Energy Efficiency of EAF through Laser-based Optimization of Post Combustion ............................................................................................................................. 58 3.5.8. Model-based Steel Temperature Measurement for Electric Arc Furnaces ................... 59 3.5.9. In-Situ Real-Time Measurement of Melt Constituents ................................................. 60 3.5.10. Injection of Plastic Waste in Blast Furnaces ............................................................... 63 3.5.11. Injection of Plastic Waste in Electric Arc Furnaces .................................................... 65 3.5.12. Use of Waste Tires in Electric Arc
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages125 Page
-
File Size-