Characterization of Pathogens for Potential Diagnostic Tests

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Pathogens for Potential Diagnostic Tests Characterization of Pathogens for Potential Diagnostic Tests A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Ph.D.) in the Department of Molecular Genetics, Biochemistry, & Microbiology of the College of Medicine by KAREN M. GALLEGOS B.S., Universidad Nacional Agraria La Molina, Perú 2013 Committee Chair: Alison A. Weiss, Ph.D. ABSTRACT Traditional methods for detection of microbial pathogens, which are based on antibody recognition, often are limited by microbial antigenic changes. Characterization of pathogens and identification of stand-alone features with diagnostic value has the potential to replace the typical approaches of current diagnostic test. The approach taken here is to use invariant features of pathogens to develop new diagnostics and potential treatment. In this thesis, we characterized intrinsic features of two very common human pathogens: influenza and the main virulence factor of E. coli O157:H7, Shiga toxin. In the first part of this study, we characterize influenza neuraminidase (NA) activity as a marker for influenza detection. Since influenza NA activity is an invariant characteristic of this virus, our objective was to develop an assay to detect and differentiate influenza NA activity from other respiratory pathogens such as parainfluenza and Streptococcus pneumoniae. We analyzed the influence of pH, calcium and NA inhibitors (oseltamivir and zanamivir) on NA using intact, viable pathogens. We found that these three pathogens display different pH optimum and the calcium requirement was different in each pathogen NA activity. We also found that influenza NA with H274Y mutation, which confers oseltamivir-resistance, displayed up to ten fold- difference in levels of drug resistance. Our results show that measuring NA activity in different conditions can be used to detect and differentiate NA activity of influenza virus, parainfluenza and S. pneumoniae. In the second study, we analyzed the ability of host factors to bind influenza surface proteins as an alternative to replace antibodies as capturing agents. Three types of host factors were considered here: (1) natural (e.g. fetuin) and synthetic receptors containing sialic acid, which mimic the traditional influenza receptor; (2) host proteins binding to the invariable glycosylation pattern of influenza glycoproteins, high mannose core, (e.g. mannose binding ii | P a g e lectin) and (3) factors playing a role in influenza-host interaction (e.g. galectin). Binding of influenza to host factors was assessed by a capturing assay. Our results show that influenza virus can be captured using all three approaches, and all of these factors show promise for replacing classical antibodies in diagnostic applications. In the third study, we characterized the binding of two immunologically distinct forms of Shiga toxin (Stx1 and Stx2) to understand their differences in cell toxicity and different affinity to the reported receptor, the glycolipid globotriaosylceramide (Gb3). Binding of Stx1 and Stx2 to Gb3, various glycans, glycosphingolipids and their mixtures was studied in the presence or absence of membrane components, phosphatidylcholine and cholesterol. Our results show that in addition to the glycan, Stx2 binding is also influenced by the Gb3 lipid and the Gb3 lipid environment; while Stx1 binds primarily to the Gb3 glycan. These results show that Stx1 and Stx2 recognize different residues in the Gb3 molecule and that Gb3 lipid environment modulates Stx binding; this is especially true for Stx2. Our results contribute to the potential development of new therapeutics and diagnostic tests. Overall, our results demonstrate that studying invariant characteristics of pathogens show promise to improve current diagnostic assays. iii | P a g e iv | P a g e Dedicado a mis padres, mis hermanos y a mi amor Rafael por ellos, por siempre y para siempre KMGV Cada día sabemos más y entendemos menos Albert Einstein No des sólo lo superfluo, da vuestro corazón Madre Teresa de Calcuta v | P a g e ACKNOWLEDGMENTS En primer lugar, quiero agradecer a mi familia, mis padres Zulema y Alberto, a mis hermanos Miguel, Giancarlo, Francisco y Susan por siempre brindarme su constante apoyo, cariño, tranquilidad y por hacerme recordar que no hay cosas más importantes en la vida que la de tener una familia unida, llena de amor, risa y franqueza. Así también quiero agradecer a Rafael Masitas por su soporte, su amor, su apoyo, su comprensión, su ayuda incondicional y por convencerme varias veces de no desistir y alcanzar mis metas. I am grateful to Dr. Alison Weiss for giving me the opportunity to work my Ph. D. in the exciting field of influenza diagnostics and Shiga toxin. I benefited a lot from her enormous experience and scientific guidance, which allow my scientific mind to sharpen. I am sincerely thankful to her. I also would like to acknowledge the members of my dissertation committee — Dr. A. Herr, Dr. R. Thompson, Dr. T. Thompson, and Dr. M. Staat— who provided helpful insight and feedback regarding this work. My thesis could not have been completed without the help my friends in the program, who listen patiently while I tried to understand the wonderful world of influenza. Special thanks to my lab mate, Sayali Karve for giving valuable support to completed this thesis. Finally, warm and heartfelt thanks to my family and my love Rafael, for making it all worthwhile and reminding me that the life outside science holds me many warm sunny days at Peru’s best beaches with awesome food and the best company ever. vi | P a g e TABLE OF CONTENTS ABSTRACT ...................................................................................................................................... 2 ACKNOWLEDGMENTS ...................................................................................................................... 6 TABLE OF CONTENTS ...................................................................................................................... 7 FIGURES AND TABLES ................................................................................................................... 12 ABBREVIATIONS ............................................................................................................................ 15 CHAPTER I: BACKGROUND .............................................................................................................. 1 1 Introduction ............................................................................................................................ 1 2 Biology of influenza virus ....................................................................................................... 2 2.1 History ..................................................................................................................... 2 2.2 Classification ........................................................................................................... 2 2.3 Characteristics of influenza virus ............................................................................. 3 2.4 Influenza life cycle ................................................................................................... 8 2.4.1 Binding to receptor ........................................................................................... 9 2.4.2 Internalization into endosome. ......................................................................... 9 2.4.3 Fusion ............................................................................................................ 10 2.4.4 Uncoating. ...................................................................................................... 12 2.4.5 Import of RNP to the nucleus ......................................................................... 13 2.4.6 Replication of genome ................................................................................... 13 2.4.7 Nuclear export and assembly ......................................................................... 14 vii | P a g e 2.4.8 Virus budding and packaging ......................................................................... 15 2.4.9 Viral release ................................................................................................... 16 2.5 Immune response to influenza infection ................................................................ 17 2.6 Epidemic and pandemic influenza ......................................................................... 19 2.6.1 Antigenic Drift ................................................................................................. 19 2.6.2 Antigenic Shift ................................................................................................ 20 3 Developing diagnostic test ................................................................................................... 21 3.1 Virus cell culture .................................................................................................... 22 3.2 Serology ................................................................................................................ 22 3.2.1 Hemagglutination inhibition (HAI) ................................................................... 22 3.3 Reverse-transcription polymerase chain reaction (RT-PCR) ................................ 23 3.4 Neuraminidase activity .......................................................................................... 24 3.5 Immunofluorescence ............................................................................................
Recommended publications
  • A Mouse B16 Melanoma Mutant Deficient in Glycolipids
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 2703-2707, March 1994 Biochemistry A mouse B16 melanoma mutant deficient in glycolipids (glucosyltransferase/glucosylceramide/glucocerebroside) SHINICHI ICHIKAWA*t, NOBUSHIGE NAKAJO*, HISAKO SAKIYAMAt, AND YOSHIo HIRABAYASHI* *Laboratory for Glyco Cell Biology, Frontier Research Program, The Institute of Chemical and Physical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama 351-01, Japan; and *Division of Physiology and Pathology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba-shi, Chiba 260, Japan Communicated by Saul Roseman, December 21, 1993 ABSTRACT Mouse B16 melanoma cell line, GM-95 (for- cosyltransferase would provide an ideal tool. Although sev- merly designated as MEC-4), deficient in sialyllactosylceram- eral glycosylation mutant cells have been isolated by treat- ide was examined for its primary defect. Glycolipids from the ment with a mutagen followed by selection with lectins, mutant cells were analyzed by high-performance TLC. No defects in these mutants were involved in either glycoprotein glycolipid was detected in GM-95 cells, even when total lipid syntheses (for review, see ref. 3), nucleotide sugar syntheses, from 107 cells was analyzed. In contrast, the content of or nucleotide sugar transporters (4). Mutants defective in ceramide, a precursor lipid molecule of glycolipids, was nor- glycolipid-specific transferases have rarely been found. Re- mal. Thus, the deficiency of glycolipids was attributed to the cently, Tsuruoka et al. (5) isolated a mouse mammary car- first glucosylation step of ceramide. The ceramide glucosyl- cinoma mutant that gained GM3 expression by selection with transferase (EC 2.4.1.80) activity was not detected in GM-95 antilactosylceramide (anti-LacCer) monoclonal antibody cells.
    [Show full text]
  • Agency Response Letter GRAS Notice No. GRN 000675
    . Janet Oesterling Novozymes North America, Inc. 77 Perry Chapel Church Road Franklinton, NC 27525 Re: GRAS Notice No. GRN 000675 Dear Ms. Oesterling: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000675. We received the notice, dated October 10, 2016, that you submitted in accordance with the agency’s proposed regulation, proposed 21 CFR 170.36 (62 FR 18938; April 17, 1997; Substances Generally Recognized as Safe (GRAS); the GRAS proposal) on July 17, 2016, and filed it on October 14, 2016. We received amendments containing clarifying information on February, 22, 2017 and March 09, 2017. FDA published the GRAS final rule on August 17, 2016 (81 FR 54960), with an effective date of October 17, 2016. As GRN 000675 was pending on the effective date of the GRAS final rule, we requested some additional information consistent with the format and requirements of the final rule. We received an amendment responding to this request on October 24, 2016. The subject of the notice is xylanase enzyme preparation produced by Trichoderma reesei carrying a xylanase gene from Talaromyces leycettanus (xylanase enzyme preparation). The notice informs us of the view of Novozymes North America, Inc. (Novozymes) that xylanase enzyme preparation is GRAS, through scientific procedures, for use as an enzyme at levels up to 48.33 mg Total Organic Solids (TOS) per kg raw material in brewing, cereal beverage processing, baking, and processing of cereal grains such as corn, wheat, barley, and oats. Commercial enzyme preparations that are used in food processing typically contain an enzyme component that catalyzes the chemical reaction as well as substances used as stabilizers, preservatives, or diluents.
    [Show full text]
  • Regulation of Glycolipid Synthesis in HL-60 Cells by Antisense
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 8670-8674, September 1995 Neurobiology Regulation of glycolipid synthesis in HL-60 cells by antisense oligodeoxynucleotides to glycosyltransferase sequences: Effect on cellular differentiation (gangliosides/gene expression/cell maturation) GuicHAo ZENG, TOSHlo ARIGA, XIN-BIN Gu, AND ROBERT K. Yu* Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0614 Communicated by Saul Roseman, Johns Hopkins University, Baltimore, MD, June 8, 1995 ABSTRACT Treatment of the human promyelocytic leuke- Gal1-Gic-Cer mia cell line HL-60 with antisense oligodeoxynucleotides to UDP-N-acetylgalactosamine: 3-1,4-N-acetylgalactosaminyl- transferase (GM2-synthase; EC 2.4.1.92) and CMP-sialic acid:a- GGM3 synd8s EC 2.4.99.8) sequences ef- 2,8-sialyltransferase (GD3-synthase; Gal-Glc-Cer GD3 synthase Grl-Glc-Cer fectively down-regulated the synthesis of more complex ganglio- SA - SA sides in the ganglioside synthetic pathways after GM3, resulting cm sA aon in a remarkable increase in endogenous GM3 with concomitant decreases in more complex gangliosides. The treated cells un- GM2 synthase derwent monocytic differentiation as judged by morphological clwiges, adherent ability, and nitroblue tetrazolium staining. GaiNAc-Gal-Glc-Cer GaINAc-Gal-Glc-Cer SA These data provide evidence that the increased endogenous sk Q ganglioside GM3 may play an important role in regulating IGM2 SA cellular differentiation and that the antisense DNA technique proves to be a powerful tool in manipulating glycolipid synthesis GalGaNAc-Ca-Glc-Cer Gal-GaINAc-Gal-Glc-Cer in the cell. SA SA SA GDlb The composition of gangliosides-in cells undergoes dramatic changes during cellular growth, differentiation, and oncogenic transformation, suggesting a specific role of gangliosides in the Gal-GaINAc-Gal-Gic-Cer Gal-GaINAc-Gal-Glc-Cer regulation of these cellular events (3-5).
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • Novel Xylan Degrading Enzymes from Polysaccharide Utilizing Loci of Prevotella Copri DSM18205
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419226; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Novel xylan degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205 Javier A. Linares-Pastén1*, Johan Sebastian Hero2, José Horacio Pisa2, Cristina Teixeira1, Margareta Nyman3, Patrick Adlercreutz1, M. Alejandra Martinez2,4, Eva Nordberg Karlsson1** 1Biotechnology, Dept of Chemistry, Lund University, P.O.Box 124, 221 00 Lund, Sweden. 2Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, San Miguel de Tucumán, Argentina. 3 Dept Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden. 4Facultad de Ciencias Exactas y Tecnología, UNT. Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina. Corresponding authors: *e-mail: [email protected] ** e-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419226; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Prevotella copri DSM18205 is a bacterium, classified under Bacteroidetes that can be found in the human gastrointestinal tract (GIT). The role of P. copri in the GIT is unclear, and elevated numbers of the microbe have been reported both in dietary fiber- induced improvement in glucose metabolism but also in conjunction with certain inflammatory conditions.
    [Show full text]
  • Exogenous Enzymes As Zootechnical Additives in Animal Feed: a Review
    catalysts Review Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review Brianda Susana Velázquez-De Lucio 1, Edna María Hernández-Domínguez 1, Matilde Villa-García 1, Gerardo Díaz-Godínez 2, Virginia Mandujano-Gonzalez 3, Bethsua Mendoza-Mendoza 4 and Jorge Álvarez-Cervantes 1,* 1 Cuerpo Académico Manejo de Sistemas Agrobiotecnológicos Sustentables, Posgrado Biotecnología, Universidad Politécnica de Pachuca, Zempoala 43830, Hidalgo, Mexico; [email protected] (B.S.V.-D.L.); [email protected] (E.M.H.-D.); [email protected] (M.V.-G.) 2 Centro de Investigación en Ciencias Biológicas, Laboratorio de Biotecnología, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Tlaxcala, Mexico; [email protected] 3 Ingeniería en Biotecnología, Laboratorio Biotecnología, Universidad Tecnológica de Corregidora, Santiago de Querétaro 76900, Querétaro, Mexico; [email protected] 4 Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Apan 43900, Hidalgo, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-771-5477510 Abstract: Enzymes are widely used in the food industry. Their use as a supplement to the raw Citation: Velázquez-De Lucio, B.S.; material for animal feed is a current research topic. Although there are several studies on the Hernández-Domínguez, E.M.; application of enzyme additives in the animal feed industry, it is necessary to search for new Villa-García, M.; Díaz-Godínez, G.; enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in Mandujano-Gonzalez, V.; certain environmental conditions and substrates. This will allow the improvement of the productive Mendoza-Mendoza, B.; Álvarez-Cervantes, J.
    [Show full text]
  • Review Sialic Acid-Specific Lectins: Occurrence, Specificity and Function
    Cell. Mol. Life Sci. 63 (2006) 1331–1354 1420-682X/06/121331-24 DOI 10.1007/s00018-005-5589-y Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2006 Review Sialic acid-specific lectins: occurrence, specificity and function F. Lehmanna, *, E. Tiralongob and J. Tiralongoa a Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre Australia 9726 (Australia), Fax: +61 7 5552 8098; e-mail: [email protected] b School of Pharmacy, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre Australia 9726 (Australia) Received 13 December 2005; received after revision 9 February 2006; accepted 15 February 2006 Online First 5 April 2006 Abstract. Sialic acids consist of a family of acidic nine- through specific interactions with lectins, a family of carbon sugars that are typically located at the terminal po- proteins that recognise and bind sugars. This review will sitions of a variety of glycoconjugates. Naturally occur- present a detailed overview of our current knowledge re- ring sialic acids show an immense diversity of structure, garding the occurrence, specificity and function of sialic and this reflects their involvement in a variety of biologi- acid-specific lectins, particularly those that occur in vi- cally important processes. One such process involves the ruses, bacteria and non-vertebrate eukaryotes. direct participation of sialic acids in recognition events Keywords. Sialic acid, lectin, sialoglycoconjugate, sialic acid-specific lectin, adhesin, infectious disease, immunology. Introduction [1, 2]. The largest structural variations of naturally occurring Sia are at carbon 5, which can be substituted with either an Sialic acids (Sia) are a family of nine-carbon a-keto acids acetamido, hydroxyacetamido or hydroxyl moiety to form (Fig.
    [Show full text]
  • Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application
    biomolecules Review Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application 1, , 2 3 1 4, Neha Srivastava * y, Rishabh Rathour , Sonam Jha , Karan Pandey , Manish Srivastava y, Vijay Kumar Thakur 5,* , Rakesh Singh Sengar 6, Vijai K. Gupta 7,* , Pranab Behari Mazumder 8, Ahamad Faiz Khan 2 and Pradeep Kumar Mishra 1,* 1 Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India; [email protected] 2 Department of Bioengineering, Integral University, Lucknow 226026, India; [email protected] (R.R.); [email protected] (A.F.K.) 3 Department of Botany, Banaras Hindu University, Varanasi 221005, India; [email protected] 4 Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India; [email protected] 5 Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK 6 Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India; [email protected] 7 Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia 8 Department of Biotechnology, Assam University, Silchar 788011, India; [email protected] * Correspondence: [email protected] (N.S.); vijay.Kumar@cranfield.ac.uk (V.K.T.); [email protected] (V.K.G.); [email protected] (P.K.M.); Tel.: +372-567-11014 (V.K.G.); Fax: +372-620-4401 (V.K.G.) These authors have equal contribution. y Received: 29 March 2019; Accepted: 28 May 2019; Published: 6 June 2019 Abstract: The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels.
    [Show full text]
  • Mapping the Transglycosylation Relevant Sites of Cold-Adapted -D
    International Journal of Molecular Sciences Article Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB Maria Rutkiewicz 1,2,* , Marta Wanarska 3 and Anna Bujacz 1 1 Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; [email protected] 2 Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany 3 Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: β-Galactosidase from Arthrobacter sp. 32cB (ArthβDG) is a cold-adapted enzyme able to catalyze hydrolysis of β-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants of ArthβDG: D207A and E517Q were designed to determine the significance of specific residues and to enable formation of complexes with lactulose and sucrose and to shed light onto the structural basis of the transglycosylation reaction. The catalytic assays proved loss of function mutation E517 into glutamine and a significant drop of activity for mutation of D207 into alanine. Solving crystal structures of two new mutants, and new complex structures of previously presented mutant E441Q enables description of introduced changes within active site of enzyme and determining the importance of mutated residues for active site size and character.
    [Show full text]
  • Synthesis of Three Advanced Biofuels from Ionic Liquid-Pretreated Switchgrass Using Engineered Escherichia Coli
    Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli Gregory Bokinskya,b, Pamela P. Peralta-Yahyaa,b, Anthe Georgea,c, Bradley M. Holmesa,c, Eric J. Steena,d, Jeffrey Dietricha,d, Taek Soon Leea,e, Danielle Tullman-Erceka,f, Christopher A. Voigtg, Blake A. Simmonsa,c, and Jay D. Keaslinga,b,d,e,f,1 aJoint BioEnergy Institute, 5885 Hollis Avenue, Emeryville, CA 94608; bQB3 Institute, University of California, San Francisco, CA 94158; cSandia National Laboratories, P.O. Box 969, Livermore, CA 94551; dDepartment of Bioengineering, and ePhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720; and gDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved November 2, 2011 (received for review May 2, 2011) One approach to reducing the costs of advanced biofuel production Unfortunately, several challenges must be overcome before from cellulosic biomass is to engineer a single microorganism to lignocellulose can be considered an economically competitive both digest plant biomass and produce hydrocarbons that have feedstock for biofuel production. One of the more significant chal- the properties of petrochemical fuels. Such an organism would lenges is the need for large quantities of glycoside hydrolase (GH) require pathways for hydrocarbon
    [Show full text]
  • Mouse Model of GM2 Activator Deficiency Manifests Cerebellar Pathology and Motor Impairment
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8138–8143, July 1997 Medical Sciences Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment (animal modelyGM2 gangliosidosisygene targetingylysosomal storage disease) YUJING LIU*, ALEXANDER HOFFMANN†,ALEXANDER GRINBERG‡,HEINER WESTPHAL‡,MICHAEL P. MCDONALD§, KATHERINE M. MILLER§,JACQUELINE N. CRAWLEY§,KONRAD SANDHOFF†,KINUKO SUZUKI¶, AND RICHARD L. PROIA* *Section on Biochemical Genetics, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, ‡Laboratory of Mammalian Genes and Development, National Institute of Child Health and Development, and §Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; †Institut fu¨r Oganische Chemie und Biochemie der Universita¨tBonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; and ¶Department of Pathology and Laboratory Medicine, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 Communicated by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, May 12, 1997 (received for review March 21, 1997) ABSTRACT The GM2 activator deficiency (also known as disorder, the respective genetic lesion results in impairment of the AB variant), Tay–Sachs disease, and Sandhoff disease are the the degradation of GM2 ganglioside and related substrates. major forms of the GM2 gangliosidoses, disorders caused by In humans, in vivo GM2 ganglioside degradation requires the defective degradation of GM2 ganglioside. Tay–Sachs and Sand- GM2 activator protein to form a complex with GM2 ganglioside. hoff diseases are caused by mutations in the genes (HEXA and b-Hexosaminidase A then is able to interact with the activator- HEXB) encoding the subunits of b-hexosaminidase A.
    [Show full text]
  • Enzyme Applications in Pulp and Paper Industry
    Enzyme Applications in Pulp and Paper: An Introduction to Applications Dr. Richard Venditti Associate Professor - Director of Graduate Programs Department of Wood and Paper Science Biltmore Hall Room 1204 Raleigh NC 27695-8005 Tel. (919) 515-6185 Fax. (919) 515-6302 Email: [email protected] Slides courtesy of Phil Hoekstra. Endo-Beta 1,4 Xylanase Enzymes • Are proteins that catalyze chemical reactions • Biological cells need enzymes to perform needed functions • The starting molecules that enzymes process are called substrates and these are converted to products Endo-Beta 1,4 Xylanase Cellulase enzyme which acts on cellulose substrate to make product of glucose. Endo-Beta 1,4 Xylanase Enzymes • Are extremely selective for specific substrates • Activity affected by inhibitors, pH, temperature, concentration of substrate • Commercial enzyme products are typically mixtures of different enzymes, the enzymes often complement the activity of one another Endo-Beta 1,4 Xylanase Types of Enzymes in Pulp and Paper and Respective Substrates • Amylase --- starch • Cellulase --- cellulose fibers • Protease --- proteins • Hemicellulases(Xylanase) ---hemicellulose • Lipase --- glycerol backbone, pitch • Esterase --- esters, stickies • Pectinase --- pectins Endo-Beta 1,4 Xylanase Enzyme Applications in Pulp and Paper • Treat starches for paper applications • Enhanced bleaching • Treatment for pitch • Enhanced deinking • Treatment for stickies in paper recycling • Removal of fines • Reduce refining energy • Cleans white water systems • Improve
    [Show full text]