A Mouse B16 Melanoma Mutant Deficient in Glycolipids

Total Page:16

File Type:pdf, Size:1020Kb

A Mouse B16 Melanoma Mutant Deficient in Glycolipids Proc. Natl. Acad. Sci. USA Vol. 91, pp. 2703-2707, March 1994 Biochemistry A mouse B16 melanoma mutant deficient in glycolipids (glucosyltransferase/glucosylceramide/glucocerebroside) SHINICHI ICHIKAWA*t, NOBUSHIGE NAKAJO*, HISAKO SAKIYAMAt, AND YOSHIo HIRABAYASHI* *Laboratory for Glyco Cell Biology, Frontier Research Program, The Institute of Chemical and Physical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama 351-01, Japan; and *Division of Physiology and Pathology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba-shi, Chiba 260, Japan Communicated by Saul Roseman, December 21, 1993 ABSTRACT Mouse B16 melanoma cell line, GM-95 (for- cosyltransferase would provide an ideal tool. Although sev- merly designated as MEC-4), deficient in sialyllactosylceram- eral glycosylation mutant cells have been isolated by treat- ide was examined for its primary defect. Glycolipids from the ment with a mutagen followed by selection with lectins, mutant cells were analyzed by high-performance TLC. No defects in these mutants were involved in either glycoprotein glycolipid was detected in GM-95 cells, even when total lipid syntheses (for review, see ref. 3), nucleotide sugar syntheses, from 107 cells was analyzed. In contrast, the content of or nucleotide sugar transporters (4). Mutants defective in ceramide, a precursor lipid molecule of glycolipids, was nor- glycolipid-specific transferases have rarely been found. Re- mal. Thus, the deficiency of glycolipids was attributed to the cently, Tsuruoka et al. (5) isolated a mouse mammary car- first glucosylation step of ceramide. The ceramide glucosyl- cinoma mutant that gained GM3 expression by selection with transferase (EC 2.4.1.80) activity was not detected in GM-95 antilactosylceramide (anti-LacCer) monoclonal antibody cells. There was no significant difference of sialyllactosylcera- (mAb) in combination with complement (5). mide synthase activity, however, between GM-95 and the In this report, we demonstrate that a mutant B16 melanoma parental cells. The deficiency of glycolipids in GM-95 cells was cell line, GM-95 [formerly designated as MEC-4; ref 6] associated with changes of the cellular morphology and growth lacking in GM3 has a primary defect in ceramide glucosyl- rate. The parental cells showed irregular shapes and tended to transferase (UDP-glucose: N-acylsphingosine D-glucosyl- overlap each other. On the other hand, GM-95 cells exhibited transferase, EC 2.4.1.80; GlcT-1). GM-95 cells contained an elongated fibroblastic morphology and parallel arrange- virtually no glycolipid and exhibited altered morphology and ment. The population-doubling times of GM-95 and the pa- growth properties. rental cells in serum-free medium were 28 hr and 19 hr, respectively. MATERIALS AND METHODS Materials. mAb GMR-6 (anti-GM3; IgM) was provided by Glycolipids are a group ofmembrane components that embed T. Tai of the Tokyo Metropolitan Institute of Science (7). the lipid portion in the outer leaflet ofplasma membrane and Fluorescein isothiocyanate labeled anti-mouse goat IgM(p.) extend the sugar chain to the outer environment. In animal was purchased from Kirkegaard & Perry Laboratories. Tet- cells, most glycolipids exist as glycosphingolipids. Most ramethylrhodamine-conjugated myosin subfragment was ob- glycosphingolipids are derived from the simplest glycolipid, tained from Wako Pure Chemical, Osaka. CMP-sialic acid glucosylceramide (GlcCer), which serves as the base for [cytidine 5'-monophosphate, sialic acid (sialic-4,5,6,7,8,9,- >300 glycosphingolipids. GlcCer and its derived glycosphin- 14C monophosphate), specific activity 5.55 GBq/mmol] and golipids are present essentially in all animal cells. Another UDP-Glc {uridine diphosphate glucose [glucose-14C (U)], group of glycolipids is the galactosphingolipids, character- specific activity 11 GBq/mmol} were purchased from NEN. ized by the attachment of galactose to ceramide; they are Ceramide prepared from bovine brain sphingomyelin, unla- mainly expressed in brain and kidney. beled nucleotide sugars, and NBD-GlcCer (12-[N-methyl-N- It is postulated that glycolipids serve as signal molecules (7-nitrobenz-2-oxa-1, 3-diazoyl-4-yl)]-aminodecanoylsphin- because of the localization on the cell surface and structural gosyl ,B-D-glucoside) were obtained from Sigma. Lactosyl- diversity of the carbohydrate moieties attached to them. ceramide was prepared from buttermilk. The Hoechst stain Several lines of evidence suggest the importance ofglycolip- kit for mycoplasma test was obtained from Flow Laborato- ids in various cellular processes. For example, neurite ex- ries. Horseradish peroxidase-conjugated lectins were from tention of neuroblastoma cells by gangliosides, such as GM1 Seikagaku Kogyo, Tokyo. All other reagents used were of and GQ1b, differentiation of HL-60 leukemia cells to macro- analytical grade. Mouse B16 melanoma cells were from M. phage by sialyllactosylceramide (GM3), growth regulation of Taniguchi of Chiba University. cells by GM3 and GlcCer, and implications of various gly- Cell Lines and Culture Conditions. GM3-deficient GM-95 colipids to cell-cell recognition have been reported (for cells were isolated from MEB-4 cells. MEB-4 cells do not review, see refs. 1 and 2). However, most of these results express a melanoma-specific antigen recognized by mAbs were obtained under artificial conditions-i.e., by an addition M562 and M622 but express another melanoma antigen ofglycolipids in culture medium, an inhibition oftransferases recognized by M2590 mAb (anti-GM3, IgM) (8). To obtain by specific inhibitors, a removal of sugar chains from gly- clones lacking GM3, MEB-4 cells were treated with N-methyl- colipids by enzymatic digestion, or a blockade of glycolipids N'-nitro-N-nitrosoguanidine (1.5 ,ug/ml). GM3-negative cells with antibodies or toxins. Although these approaches are were selected by killing with M2590 mAb and rabbit com- very useful to study the functions of glycolipids, one cannot plement. After 10 times selection of the mutagenized cells exclude the intrinsic side effect. with M2590 mAb, 100 clones were isolated by limiting To study the biological functions of glycolipids under physiological conditions, mutant cells lacking a specific gly- Abbreviations: GlcCer, glucosylceramide or glucocerebroside; Lac- Cer, lactosylceramide; GM3, sialyllactosylceramide; GlcT-1, ceram- The publication costs of this article were defrayed in part by page charge ide glucosyltransferase; mAb, monoclonal antibody; HPTLC, high- payment. This article must therefore be hereby marked "advertisement" performance TLC. in accordance with 18 U.S.C. §1734 solely to indicate this fact. tTo whom reprint requests should be addressed. 2703 2704 Biochemistry: Ichikawa et al. Proc. Natl. Acad Sci. USA 91 (1994) dilution. The clones were then tested for reactivity toward dpm per reaction)/80 pg ofcell protein. The reaction mixture M2590 mAb by indirect immunostaining, and four clones with was incubated for 2 hr at 370C. After incubation, the reaction low or nonreactivity with the antibody were isolated. These was stopped with 500 p4 ofwater, and the sample was applied clone were designated as MEC-1, MEC-2, MEC-3, and to Bond Elute RP 18 column (Analytichem International, MEC-4 (6); they were renamed as GM-20, GM-70, GM-89, Harbor City, CA) equilibrated with water. The column was and GM-95, respectively, because they are GM3 mutants. washed with water, and the glycolipids were eluted with These cell lines were tumorigenic, and their metastatic prop- chloroform/methanol, 2:1. The eluent was dried and sub- erties have been characterized (6). In the present study, jected to TLC followed by autoradiography. GM-95 cells, which express no GM3, were examined to Glucocerebrosidase activity was measured according to determine the deficient point in GM3 synthesis. the method of Dinur et al. (18). The cells were routinely maintained in Dulbecco's modi- Cell Growth Assay. Cells were maintained in E-RDF me- fied Eagle's medium (DMEM) (GIBCO)/10%o fetal calfserum dium supplemented with RD-I 2 weeks before the growth under 5% C02/95% air. When serum-free conditions were assay. Cells (1 x 104) were plated in 96-well plates (Primaria; required, E-RDF medium supplemented with RD-I (Kyokuto Beckton Dickinson Labware). The cell number was deter- Pharmaceutical, Tokyo) was used (9). All cell lines were mined after staining with crystal violet by a colorimetric negative in mycoplasma contamination when tested with the assay described by Kung et al. (19). Hoechst 33258 staining kit (10). Protein Assay. Proteins were quantitated by using Micro Indict Immunfluorescent Stainin. Cells were allowed to BCA protein assay reagent kit (Pierce) (20). attach for 24 hr to glass coverslips. The cells were washed with phosphate-buffered saline (PBS), fixed with 10% (vol/ vol) formaldehyde, blocked for 1 hr with 10%6fetal calfserum, RESULTS and treated with GMR-6 mAb (1:1, culture supernatant). MorphdogWical Characterization of GO-Deficient GM-95 After being washed with PBS, the cells were poststained with Cells. B16 melanoma cells and its mutagenized subclone fluorescein isothiocyanate-labeled anti-mouse IgM. MEB-4 cells have been shown to express Gm3 on the cell Lpid Analyses. Cells grown in E-RDF medium were col- surface (6). We have isolated a GM3-deficient mutant, GM-95, lected by scraping at subconfluency, washed twice with PBS, from MEB-4 cells. Indirect immunofluorescent staining of and lyophilized. Total lipids were extracted with 20 vol of MEB-4 and GM-95 cells are shown in Fig. 1. MEB-4 cells chloroform/methanol, 2:1 (vol/vol), filtrated, and evapo- expressed GM3 strongly (Fig. 1A), whereas GM-95 cells did rated to dryness. The total lipids were then redissolved into not express GM3 (Fig. 1B). Actin filament was stained with a small volume of chloroform/methanol, 2:1 (vol/vol) and tetramethylrhodamine-conjugated myosin subfiagment to vi- chromatographed on a precoated silica-gel high-performance sualize all cells in the same field (Fig. 1 C andD). MEB-4 cells TLC (HPTLC) plate (E. Merck) in chloroform/methanol/ show irregular shapes and tended to overlap each other (Fig. water, 65:25:4 (vol/vol).
Recommended publications
  • Regulation of Glycolipid Synthesis in HL-60 Cells by Antisense
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 8670-8674, September 1995 Neurobiology Regulation of glycolipid synthesis in HL-60 cells by antisense oligodeoxynucleotides to glycosyltransferase sequences: Effect on cellular differentiation (gangliosides/gene expression/cell maturation) GuicHAo ZENG, TOSHlo ARIGA, XIN-BIN Gu, AND ROBERT K. Yu* Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0614 Communicated by Saul Roseman, Johns Hopkins University, Baltimore, MD, June 8, 1995 ABSTRACT Treatment of the human promyelocytic leuke- Gal1-Gic-Cer mia cell line HL-60 with antisense oligodeoxynucleotides to UDP-N-acetylgalactosamine: 3-1,4-N-acetylgalactosaminyl- transferase (GM2-synthase; EC 2.4.1.92) and CMP-sialic acid:a- GGM3 synd8s EC 2.4.99.8) sequences ef- 2,8-sialyltransferase (GD3-synthase; Gal-Glc-Cer GD3 synthase Grl-Glc-Cer fectively down-regulated the synthesis of more complex ganglio- SA - SA sides in the ganglioside synthetic pathways after GM3, resulting cm sA aon in a remarkable increase in endogenous GM3 with concomitant decreases in more complex gangliosides. The treated cells un- GM2 synthase derwent monocytic differentiation as judged by morphological clwiges, adherent ability, and nitroblue tetrazolium staining. GaiNAc-Gal-Glc-Cer GaINAc-Gal-Glc-Cer SA These data provide evidence that the increased endogenous sk Q ganglioside GM3 may play an important role in regulating IGM2 SA cellular differentiation and that the antisense DNA technique proves to be a powerful tool in manipulating glycolipid synthesis GalGaNAc-Ca-Glc-Cer Gal-GaINAc-Gal-Glc-Cer in the cell. SA SA SA GDlb The composition of gangliosides-in cells undergoes dramatic changes during cellular growth, differentiation, and oncogenic transformation, suggesting a specific role of gangliosides in the Gal-GaINAc-Gal-Gic-Cer Gal-GaINAc-Gal-Glc-Cer regulation of these cellular events (3-5).
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • Review Sialic Acid-Specific Lectins: Occurrence, Specificity and Function
    Cell. Mol. Life Sci. 63 (2006) 1331–1354 1420-682X/06/121331-24 DOI 10.1007/s00018-005-5589-y Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2006 Review Sialic acid-specific lectins: occurrence, specificity and function F. Lehmanna, *, E. Tiralongob and J. Tiralongoa a Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre Australia 9726 (Australia), Fax: +61 7 5552 8098; e-mail: [email protected] b School of Pharmacy, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre Australia 9726 (Australia) Received 13 December 2005; received after revision 9 February 2006; accepted 15 February 2006 Online First 5 April 2006 Abstract. Sialic acids consist of a family of acidic nine- through specific interactions with lectins, a family of carbon sugars that are typically located at the terminal po- proteins that recognise and bind sugars. This review will sitions of a variety of glycoconjugates. Naturally occur- present a detailed overview of our current knowledge re- ring sialic acids show an immense diversity of structure, garding the occurrence, specificity and function of sialic and this reflects their involvement in a variety of biologi- acid-specific lectins, particularly those that occur in vi- cally important processes. One such process involves the ruses, bacteria and non-vertebrate eukaryotes. direct participation of sialic acids in recognition events Keywords. Sialic acid, lectin, sialoglycoconjugate, sialic acid-specific lectin, adhesin, infectious disease, immunology. Introduction [1, 2]. The largest structural variations of naturally occurring Sia are at carbon 5, which can be substituted with either an Sialic acids (Sia) are a family of nine-carbon a-keto acids acetamido, hydroxyacetamido or hydroxyl moiety to form (Fig.
    [Show full text]
  • Mouse Model of GM2 Activator Deficiency Manifests Cerebellar Pathology and Motor Impairment
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8138–8143, July 1997 Medical Sciences Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment (animal modelyGM2 gangliosidosisygene targetingylysosomal storage disease) YUJING LIU*, ALEXANDER HOFFMANN†,ALEXANDER GRINBERG‡,HEINER WESTPHAL‡,MICHAEL P. MCDONALD§, KATHERINE M. MILLER§,JACQUELINE N. CRAWLEY§,KONRAD SANDHOFF†,KINUKO SUZUKI¶, AND RICHARD L. PROIA* *Section on Biochemical Genetics, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, ‡Laboratory of Mammalian Genes and Development, National Institute of Child Health and Development, and §Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; †Institut fu¨r Oganische Chemie und Biochemie der Universita¨tBonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; and ¶Department of Pathology and Laboratory Medicine, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 Communicated by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, May 12, 1997 (received for review March 21, 1997) ABSTRACT The GM2 activator deficiency (also known as disorder, the respective genetic lesion results in impairment of the AB variant), Tay–Sachs disease, and Sandhoff disease are the the degradation of GM2 ganglioside and related substrates. major forms of the GM2 gangliosidoses, disorders caused by In humans, in vivo GM2 ganglioside degradation requires the defective degradation of GM2 ganglioside. Tay–Sachs and Sand- GM2 activator protein to form a complex with GM2 ganglioside. hoff diseases are caused by mutations in the genes (HEXA and b-Hexosaminidase A then is able to interact with the activator- HEXB) encoding the subunits of b-hexosaminidase A.
    [Show full text]
  • Prospects for Using Expression Patterns of Paramyxovirus Receptors As Biomarkers for Oncolytic Virotherapy
    cancers Review Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy Olga V. Matveeva 1,* and Svetlana A. Shabalina 2,* 1 Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA 2 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA * Correspondence: [email protected] (O.V.M.); [email protected] (S.A.S.) Received: 27 October 2020; Accepted: 1 December 2020; Published: 5 December 2020 Simple Summary: Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract: The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors.
    [Show full text]
  • Liposomal Nanovaccine Containing Α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8+ T Cell Responses Via CD169+ Macrophages and Cdc1
    Article Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8+ T Cell Responses via CD169+ Macrophages and cDC1 Joanna Grabowska 1,†, Dorian A. Stolk 1,† , Maarten K. Nijen Twilhaar 1, Martino Ambrosini 1, Gert Storm 2,3,4, Hans J. van der Vliet 5,6, Tanja D. de Gruijl 5, Yvette van Kooyk 1 and Joke M.M. den Haan 1,* 1 Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; [email protected] (J.G.); [email protected] (D.A.S.); [email protected] (M.K.N.T.); [email protected] (M.A.); [email protected] (Y.v.K.) 2 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; [email protected] 3 Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands 4 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore 5 Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (H.J.v.d.V.); [email protected] (T.D.d.G.) 6 Lava Therapeutics, 3584 CM Utrecht, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-4448080 Citation: Grabowska, J.; Stolk, D.A.; † Authors contributed equally. Nijen Twilhaar, M.K.; Ambrosini, M.; Storm, G.; van der Vliet, H.J.; Abstract: Successful anti-cancer vaccines aim to prime and reinvigorate cytotoxic T cells and should de Gruijl, T.D.; van Kooyk, Y.; therefore comprise a potent antigen and adjuvant.
    [Show full text]
  • Download (Accessed on 10 December 2020)
    H OH metabolites OH Article Comprehensive Identification of Glycosphingolipids in Human Plasma Using Hydrophilic Interaction Liquid Chromatography— Electrospray Ionization Mass Spectrometry Karel Hoˇrejší 1,2, Robert Jirásko 1, Michaela Chocholoušková 1, Denise Wolrab 1, David Kahoun 2 and Michal Holˇcapek 1,* 1 Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; [email protected] (K.H.); [email protected] (R.J.); [email protected] (M.C.); [email protected] (D.W.) 2 Institute of Chemistry, Faculty of Science, University of South Bohemia in Ceskˇ é Budˇejovice,Branišovská 1760, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-466-037-087 Abstract: Glycosphingolipids (GSL) represent a highly heterogeneous class of lipids with many cellular functions, implicated in a wide spectrum of human diseases. Their isolation, detection, and comprehensive structural analysis is a challenging task due to the structural diversity of GSL molecules. In this work, GSL subclasses are isolated from human plasma using an optimized monophasic ethanol–water solvent system capable to recover a broad range of GSL species. Obtained Citation: Hoˇrejší,K.; Jirásko, R.; deproteinized plasma is subsequently purified and concentrated by C18-based solid-phase extraction Chocholoušková, M.; Wolrab, D.; (SPE). The hydrophilic interaction liquid chromatography coupled to electrospray ionization linear Kahoun, D.; Holˇcapek,M. ion trap tandem mass spectrometry (HILIC-ESI-LIT-MS/MS) is used for GSL analysis in the human Comprehensive Identification of plasma extract. Our results provide an in-depth profiling and structural characterization of glycosph- Glycosphingolipids in Human ingolipid and some phospholipid subclasses identified in the human plasma based on their retention Plasma Using Hydrophilic Interaction times and the interpretation of tandem mass spectra.
    [Show full text]
  • GM3 Ganglioside and Phosphatidylethanolamine-Containing Lipids Are Adipose Tissue Markers of Insulin Resistance in Obese Women
    International Journal of Obesity (2016) 40, 706–713 © 2016 Macmillan Publishers Limited All rights reserved 0307-0565/16 www.nature.com/ijo ORIGINAL ARTICLE GM3 ganglioside and phosphatidylethanolamine-containing lipids are adipose tissue markers of insulin resistance in obese women JM Wentworth1,2, G Naselli1, K Ngui1, GK Smyth3,4, R Liu3,PEO’Brien2, C Bruce5, J Weir6, M Cinel6, PJ Meikle6,7 and LC Harrison1,7 AIMS: The association between central obesity and insulin resistance reflects the properties of visceral adipose tissue. Our aim was to gain further insight into this association by analysing the lipid composition of subcutaneous and omental adipose tissue in obese women with and without insulin resistance. METHODS: Subcutaneous and omental adipose tissue and serum were obtained from 29 obese non-diabetic women, 13 of whom were hyperinsulinemic. Histology, lipid and gene profiling were performed. RESULTS: In omental adipose tissue of obese, insulin-resistant women, adipocyte hypertrophy and macrophage infiltration were accompanied by an increase in GM3 ganglioside and its synthesis enzyme ST3GAL5; in addition, phosphatidylethanolamine (PE) lipids were increased and their degradation enzyme, phosphatidylethanolamine methyl transferase (PEMT), decreased. ST3GAL5 was expressed predominantly in adipose stromovascular cells and PEMT in adipocytes. Insulin resistance was also associated with an increase in PE lipids in serum. INTERPRETATION: The relevance of these findings to insulin resistance in humans is supported by published mouse studies, in which adipocyte GM3 ganglioside, increased by the inflammatory cytokine tumour necrosis factor-α, impaired insulin action and PEMT was required for adipocyte lipid storage. Thus in visceral adipose tissue of obese humans, an increase in GM3 ganglioside secondary to inflammation may contribute to insulin resistance and a decrease in PEMT may be a compensatory response to adipocyte hypertrophy.
    [Show full text]
  • Ganglioside Composition and Histology of a Spontaneous Metastatic Brain Tumour in the VM Mouse
    British Journal of Cancer (2001) 85(2), 285–292 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2001.1909, available online at http://www.idealibrary.com on http://www.bjcancer.com Ganglioside composition and histology of a spontaneous metastatic brain tumour in the VM mouse M El-Abbadi1, TN Seyfried1, AJ Yates3, C Orosz3 and MC Lee2 1Department of Biology, Boston College, Chestnut Hill, MA 02467, USA; 2Department of Pathology, Chonnam National University Medical School, Kwangju, Korea; 3Division of Neuropathology, The Ohio State University, Columbus OH, USA Summary Glycosphingolipid abnormalities have long been implicated in tumour malignancy and metastasis. Gangliosides are a family of sialic acid-containing glycosphingolipids that modulate cell–cell and cell–matrix interactions. Histology and ganglioside composition were examined in a natural brain tumour of the VM mouse strain. The tumour is distinguished from other metastatic tumour models because it arose spontaneously and metastasizes to several organs including brain and spinal cord after subcutaneous inoculation of tumour tissue in the flank. By electron microscopy, the tumour consisted of cells (15 to 20 µm in diameter) that had slightly indented nuclei and scant cytoplasm. The presence of smooth membranes with an absence of junctional complexes was a characteristic ultrastructural feature. No positive immunostaining was found for glial or neuronal markers. The total ganglioside sialic acid content of the subcutaneously grown tumour was low (12.6 ± 0.9 µg per 100 mg dry wt, n = 6 separate tumours) and about 70% of this was in the form of N-glycolylneuraminic acid. In contrast, the ganglioside content of the cultured VM tumour cells was high (248.4 ± 4.4 µg, n = 3) and consisted almost exclusively of N- acetylneuraminic acid.
    [Show full text]
  • Efficient Diversification of GM3 Ganglioside Via Late-Stage Sialylation and Dynamic Glycan Structural Studies with 19F Solid-State NMR
    Organic & Biomolecular Chemistry Efficient diversification of GM3 ganglioside via late-stage sialylation and dynamic glycan structural studies with 19F solid-state NMR Journal: Organic & Biomolecular Chemistry Manuscript ID OB-ART-02-2020-000437.R1 Article Type: Paper Date Submitted by the 16-Mar-2020 Author: Complete List of Authors: Takahashi, Maina; Gifu University, Applied bioorganic chemistry Shirasaki, Junya; Gifu University, Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) Komura, Naoko; Gifu University, Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) Sasaki, Katsuaki; Osaka University, Department of Chemistry, Graduate School of science, Tanaka, Hidenori; Gifu University, Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) Imamura, Akihiro; Gifu University, Applied Bioorganic Chemistry Ishida, Hideharu; Gifu University, Applied bioorganic chemistry Hanashima, Shinya; Osaka University, Department of Chemistry, Graduate School of science, Osaka University Murata, Michio; Osaka University, Graduate School of Science Ando, Hiromune; Gifu University, Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) Page 1 of 13 OrganicPlease & do Biomolecular not adjust marginsChemistry ARTICLE Efficient diversification of GM3 ganglioside via late-stage Received 00th sialylation and dynamic glycan structural studies with 19F solid- January 20xx, state NMR Maina Takahashi a,d, Junya Shirasaki b,d, Naoko Komura b,*, Katsuaki Sasaki c, Hide-Nori Tanaka b, Akihiro Imamura a, Hideharu Ishida a,b, Shinya Hanashima c,*,Michio Murata c and Hiromune Ando b,* Accepted 00th January 20xx Sialic acid-containing glycoconjugates are involved in important biological processes such as immune response, cancer DOI: 10.1039/x0xx00000x metastasis, and viral infection.
    [Show full text]
  • Ganglioside GM3 and Its Role in Cancer Changping Zheng, Marco Terreni, Matthieu Sollogoub, Yongmin Zhang
    Ganglioside GM3 and Its Role in Cancer Changping Zheng, Marco Terreni, Matthieu Sollogoub, Yongmin Zhang To cite this version: Changping Zheng, Marco Terreni, Matthieu Sollogoub, Yongmin Zhang. Ganglioside GM3 and Its Role in Cancer. Current Medicinal Chemistry, Bentham Science Publishers, 2019, 26 (16), pp.2933– 2947. 10.2174/0929867325666180129100619. hal-02889373 HAL Id: hal-02889373 https://hal.archives-ouvertes.fr/hal-02889373 Submitted on 22 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ganglioside GM3 and Its Role in Cancer a c a a,b,* Changping Zheng , Marco Terreni , Matthieu Sollogoub , Yongmin Zhang a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France; b Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, 430056 Wuhan, China; c Drug Sciences Department, University of Pavia, Via le Taramelli 12, 27100 Pavia, Italy. * Corresponding author Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8232, IPCM, 4 place Jussieu 75005 Paris, France. E-mail: [email protected] Abstract: Ganglioside GM3 is strongly related with human tumors, such as lung, brain cancers and melanomas, and more and more evidences have revealed that GM3 possesses powerful effects on cancer development and progression.
    [Show full text]
  • Occurrence of Sulfatide As a Major Glycosphingolipid in WHHL Rabbit Serum Lipoproteins1
    /. Biochem. 102, 83-92 (1987) Occurrence of Sulfatide as a Major Glycosphingolipid in WHHL Rabbit Serum Lipoproteins1 Atsushi HARA and Tamotsu TAKETOMI Downloaded from https://academic.oup.com/jb/article/102/1/83/782552 by guest on 27 September 2021 Department of Lipid Biochemistry, Institute of Cardiovascular Disease, Shinshu University School of Medicine, Matsumoto, Nagano 390 Received for publication, February 12, 1987 Glycosphingolipids in serum and lipoproteins from Watanabe hereditable hyper- lipidemic rabbit (WHHL rabbit), which is an animal model for human familial hypercholesterolemia (FH), were analyzed for the first time in this study. Chylo- microns and very low density, low density, and high density lipoproteins contained sulfatide as a major glycosphingolipid (12 nmol//imol total phospholipids (PL) in chylomicrons, 19nmol//imol PL in VLDL, 18 nmol//imol PL in LDL, and 14 nmol/ /*mol PL in HDL) with other minor glycosphingolipids such as glucosylceramide, galactosylceramide, GM3 ganglioside, lactosylceramide, and globotriaosylceramide. The concentration of sulfatide as a major glycosphingolipid in WHHL rabbit serum (121 nmol/ml) was much higher than that in normal rabbit serum (3 nmol/ml). Fatty acids of the sulfatides comprised mainly nonhydroxy fatty acids (C22, 23, and 24) and significant amounts of hydroxy fatty acids (about 10 %), whereas long chain bases of the sulfatides comprised mostly (4E>sphingenine with a significant amount of 4D-hydroxysphinganine (about 10%). Furthermore, sulfatides in the liver and small intestine from normal and WHHL rabbits (where serum lipoproteins are produced) were determined to amount to 260nmol/g liver in WHHL rabbit, 104 nmol/g liver in control rabbit, 99.6 nmol/g small intestine in WHHL rabbit, and 31.2nmol/g small intestine in control rabbit.
    [Show full text]