Biodiversity and Ecosystem Processes in the Strandline: the Role of Species

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity and Ecosystem Processes in the Strandline: the Role of Species Biodiversity and Ecosystem Processes In the Strandline: The Role of Species ]dentit>', Diversity, Interactions and Body Size By Sally Jane Marsh A thesis submitted to the University of Plymouth in partial fulfillment for the degree of DOCTOR OF PHILOSOPHY School of Biological Sciences, Faculty of Science In collaboration with Plymouth Marine Laboratory January 2008 University of Plymouth Library Shelfma,-1< Biodiversity' and Ecosystem Processes in the Strandline: The Role of Species ldentit>', Diversity, Interactions and Body Size Sally Jane Marsh Abstract In ihe current climate of biodiversity loss how species diversity and ecosystem process are linked is, arguably, one of the most pressing issues and greaiesl challenges currently facing the scientific community. Previous studies suggest that there is no universal Irajcciory for the relationship between diversity and ecosystem processes, the pattern depends largely on species identity and their interactions. Furthermore, the effect of reduced diversity on ecosystem process in multi-trophic assemblages is both understudied and poorly understood. Consequently, the overall aim of the present study was to investigate the role of species identity, diversity and interactions in determining ecosystem processes using the strandline as a model system. Appropriate strandline species, three species of kelp fly larvae, an amphipod and four rove beetles were were selected for use in laboratory manipulative experiments that measured decomposition as an ecosystem process. This study is one of the few to consider the affect of species interactions on ecosystem processes. The use of metabolic theory to make predictions of trophic interactions and ecosystem processes, using tractable surrogate measures of interaction strength, was also investigated. Finally, the importance of trophic interactions in affecting ihe connection between ecosystem processes and consumer species identity, diversity and interactions was examined. Species identity combination explained the variability in decomposition when strandlinc decomposer diversity and identity were manipulated. Positive and negative interactions were identified, and the effect of diversity on decomposition was dependent on the balance of these negative and positive species interactions. A mechanism of microbial facilitation and inhibition was proposed to explain the outcome as no previously proposed single mechanism adequately described the observed effect of species identity, diversity and interactions on ecosystem process found in this study. It was not possible to accurately predict obser\'cd predator-prey interaction strengths and ecosystem processes between strandline predators and prey and decomposition using body size as a surrogate measure of interaction strength and ecosystem processes. Although body size was an important factor explaining the variability in predator-prey interactions and decomposition, so too was species identity. The absence of a consistent relationship between size and interaction strength and decomposition was attributed to species-specific differences. The presence of trophic interactions subtly affected decomposition of wrack by strandline delrilivores. However, in the presence and absence of a predator the overall effect of detritivore diversity and interactions on decomposition remained constant. The results of this study have implications for the fields of biodiversity ecology, metabolic theory of ecology and food web ecology. Firstly, the identification of positive detritivore-resource interactions adds to a growing body of evidence that some detrilivore species may interact positively, with respect to ecosystem processes. The loss of species within a trophic group may result in a greater reduction in ecosystem processes than previously thought. If positive species interactions are prevalent, ecosystem process will decrease to a greater extent as species are lost, than that predicted from single species processing rates. By considering species interactions, future biodiversity ecosystem processing studies may better understand the effects of species diversity and identity on ecosystem process. It is also suggested that patterns and relationships uncovered in previous studies investigating the effects of species from a single trophic level on ecosystem process may still be valid in more realistic multi-trophic systems. If future biodiversity-ecosystem process studies are to make predictions concenning actual species-ecosystem process interactions in real assemblages the size of constituent species should be considered, as predator and prey size was shown to effect predator-prey interactions and ecosystem processes. The results of this study also suggest that allometry and metabolic theory have limited capacity for making predictions of predator-prey interactions and ecosystem processes, at least at the scale investigated here. Species specific factors are more likely to explain the patterns of predator-prey interactions and ecosystem processes at smaller scales. Unless food web models consider, or allocate, non-trophic interactions correctly, erroneous predictions of energy How and ecosystem process may result. Finally, the use of body size and allomelric scaling laws to quantify food web models and energy fiow through an assemblage must be treated with caution if these models are used to make predictions on interactions between species and ecosystem processes occurring at the scale investigated in this study. Acknowledgments I would like lo thank NERC for providing the fianding for this PhD and providing me with this excellent opportunity. Many thanks to all my supervisors for their support and help. I would especially like to thank John Spicer whose constant help, enthusiasm and good humour made this PhD both possible and a fantastic learning experience. I would also like to thank Dave Bilton for his help with beetle identification and invaluable advice regarding their natural history. Also Dave Raffaelii for his enthusiasm and help with the theoretical aspects of this project and for introducing me to Guy Woodward, Jose Montoya, Mark Emmerson and Phil Warren, whose comments on this project's rationale were much appreciated, i also express my gratitude to Bob Clarke and Andy Foggo for allowing me to pick their brains on statistical matters throughout this work. Thank you to Ann Torr, Pete Smithers, Roger Haslam, Alex, Joolz and Richard Ticehurst who helped enormously with the practical aspects of this project and also allowed me to fill the 6* floor, 7'^ floor and S**" floor labs with rotten wrack, larvae, beetles and amphipods. I wish to thank all the students that helped with the field and lab work, Elizabeth McAfee, Zoe Hutchinson, Saskya Richardson, with special thanks to Rachel Bott for all her help with chapter 3 and Rob Ellis who helped set up many experiments at unsociable hours and even cycled to Wembury to help collect samples. 1 also wish to thank the whole of MBERC, who were amazing to work with and made this PhD experience all the more fun. Thank you to everyone who helped out either in the field the lab or provided brain support. I would particularly like to thank Pip Moore, Sophie Mowles, Marta Soffker, John Griffin, Awantha Dissanayake and Martin Canty for their comments on various chapters in this thesis. I must also thank; Richard Hartley, Mark Browne, Emma Jackson, Sam Glanfield, Pete Cotton, Simon Rundle, Kalh Sloman and Emma Sheehan. Last but far from least I would particularly like to thank my friends and family for their patience, understanding and moral support. Author's Declaration At no time during the registration for degree of Doctor of Philosophy has the author been registered for any other University award. This study was funded by the Natural Environment Research Council. Presentations and Conferences Attended. S. Marsh, J.I. Spicer, S. Widdicombe (2007) Biodiversity and Ecosystem Processes in the strandHne. Oral Presentation. Change in aquatic ecosystems. Conference 2-6^^ July 2007, Plymouth. S. Marsh, J.l. Spicer, S.Widdicombe, A. Rees and J. Blackford (2005) Biodiversity and Ecosystem Function: Can Body Size and Food Webs be used to Elucidate the Relationship (2005). Poster Presentation. The British Ecological Society Special Symposium. Body Size and the Organisation of Aquatic Ecosystems. 2-4 September 2005. de Havilland Campus, University of Hertfordshire, Hatfield, Herts, ALIO 9EU, UK. S. Marsh, J.i. Spicer, S.Widdicombe, A. Rees and J. Blackford (2005)Measuring, Mapping and Modelling Denitrification and Bioturbation. Poster Presentation. The First Nereis Park conference November 7-9, 2004,Carry-Le-Rouet, Bouches-du-Rhone, France. Worshops and Courses Attended. PRIMER 6.2 Workshop. (2006) Five-day course. Instructors Bob Clarke, Richard Warwick and Paul Somerfield. The Marine Biological Association of the UK, Citadel Hill, Plymouth. Undertaking a Systematic Review Workshop (2007) One- Day course taught by Gavin Steward, funded by the Society for Conservation Biology. 28, 2007. University of Birmingham. QUEST Earth Systems Science Summer School (ES4 4) (2004) 10-day course run by Prof Brian Hoskins (Reading) and Prof Peter Liss (East Anglia). 13-24 September 2004. Department of Meteorology, University of Reading. Signed...>^<^^.., \\\ Table of Contents Abstract i Acknowledgments ii Author's Declaration iii CHAPTER 1: INTRODUCTION I 1.1 Chapter Aims and Outline 1 1.2 Biodiversily and Ecosystem Function - Definitions and Importance 2 1.3 A Brief Introduction to Biodiversity
Recommended publications
  • The Beachflea Platorchestia Platensis
    The beachflea Platorchestia OCEANOLOGIA, 48 (2), 2006. pp. 287–295. platensis (Krøyer, 1845): C 2006, by Institute of a new addition to the Oceanology PAS. Polish fauna (with KEYWORDS a key to Baltic talitrid Platorchestia platensis amphipods)* Talitrid amphipod Southern Baltic John I. Spicer1 Urszula Janas2 1 Marine Biology and Ecology Research Centre, School of Biological Sciences, University of Plymouth, Plymouth PL4 8AA, UK; e-mail: [email protected] 2 Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, PL–81–378 Gdynia, Poland Received 20 December 2005, revised 23 May 2006, accepted 5 June 2006. Abstract The present paper reports for the first time on the occurrence of Platorchestia platensis (Krøyer, 1845) (Crustacea, Amphipoda) in Puck Bay (southern Baltic, Poland) in May 2005. A key to the Baltic talitrids is given, which can be used to identify males and females of the four species occurring on Polish shores (Talitrus saltator, Talorchestia deshayesii, Orchestia cavimana, Platorchestia platensis)and additionally Orchestia gammarellus, which may yet be found in the Polish coastal zone. Only three species of talitrid amphipod (Crustacea) have been recorded from Polish shores. The sandhoppers Talitrus saltator (Montagu, 1808) and Talorchestia deshayesii (Audouin, 1826) are ubiquitous beneath flotsam and jetsam or wrack cast up at the high water mark on sandy beaches * This work was funded through European Community project BALTDER under the fifth FP, contract No EVK3-CT-2002-80005 and the Polish Ministry of Scientific Research and Information. The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/ 288 J.
    [Show full text]
  • HELCOM Red List
    SPECIES INFORMATION SHEET Talitrus saltator English name: Scientific name: Sand hopper Talitrus saltator Taxonomical group: Species authority: Class: Malacostraca Montagu, 1808 Order: Amphipoda Family: Talitridae Subspecies, Variations, Synonyms: Generation length: Talitrus locustra Sars, 1890 females 1,5 year males 21 months Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): codes): Tourism (cleaning of beaches; G05.05) Tourism (cleaning of beaches; G05.05) IUCN Criteria: HELCOM Red List DD – Category: Data Deficient Global / European IUCN Red List Category: Habitats Directive: NE/NE – Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland –/–, Germany –/2 (Endangered, incl. North Sea, Latvia –/–, Lithuania –/–, Poland strictly protected by law/–, Russia –/–, Sweden –/– Distribution and status in the Baltic Sea region The species inhabits supralittoral sandy beaches in the southern and western Baltic Sea (Trave Estuary, Greifswald Lagoon, Rugia Lagoons, Polish coast, Curonian Lagoon). As the habitat is under pressure by tourism and the species has been found sensitive to the side-effects of tourism, e.g. trampling and cleaning of algal belts from beaches, it is likely that the population has declined. Outside the HELCOM area the species can be found in the north-eastern Atlantic and North Sea, as well as along European coasts from southern Norway to the western Mediterranean. © HELCOM Red List Benthic Invertebrate Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of species SPECIES INFORMATION SHEET Talitrus saltator Distribution map The georeferenced records of species compiled from the databases of the Swedish Species Information Centre (Artportalen) and the Leibniz Institute for Baltic Sea Research (IOW), and from Zaddach (1844), Drzycimski & Nawodzinska (1965), and Weslawski et al.
    [Show full text]
  • SPECIES INFORMATION SHEET Orchestia Gammarellus
    SPECIES INFORMATION SHEET Orchestia gammarellus English name: Scientific name: – Orchestia gammarellus Taxonomical group: Species authority: Class: Malacostraca Pallas, 1766 Order: Amphipoda Family: Talitridae Subspecies, Variations, Synonyms: Generation length: Orchestia gammarella Pallas, 1766 1–2 years Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): codes): IUCN Criteria: HELCOM Red List DD – Category: Data Deficient Global / European IUCN Red List Category: Habitats Directive: Tourism (cleaning of beaches; G05.05), – Construction (J02.12.01) Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland –/–, Germany –/V (Near threatened, incl. North Sea), Latvia –/–, Lithuania –/–, Poland –/–, Russia –/–, Sweden –/– Distribution and status in the Baltic Sea region Orchestia gammarellus is a rare amphipod which lives in a potentially deteriorated habitat in the southern and western Baltic Sea. The only recent finding is from Germany. The Swedish data are entirely from the 1920s and 1930s but on the other hand the species has not necessarily been looked for more recently. Outside the HELCOM area the species is transatlantic. The species is widespread and frequently recorded on European coasts from western Norway and Iceland to Mediterranean and Black Sea; also South-West Africa. © HELCOM Red List Benthic Invertebrate Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of species SPECIES INFORMATION SHEET Orchestia gammarellus
    [Show full text]
  • British Museum (Natural History)
    Bulletin of the British Museum (Natural History) Darwin's Insects Charles Darwin 's Entomological Notes Kenneth G. V. Smith (Editor) Historical series Vol 14 No 1 24 September 1987 The Bulletin of the British Museum (Natural History), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology, and an Historical series. Papers in the Bulletin are primarily the results of research carried out on the unique and ever-growing collections of the Museum, both by the scientific staff of the Museum and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. Parts are published at irregular intervals as they become ready, each is complete in itself, available separately, and individually priced. Volumes contain about 300 pages and several volumes may appear within a calendar year. Subscriptions may be placed for one or more of the series on either an Annual or Per Volume basis. Prices vary according to the contents of the individual parts. Orders and enquiries should be sent to: Publications Sales, British Museum (Natural History), Cromwell Road, London SW7 5BD, England. World List abbreviation: Bull. Br. Mus. nat. Hist. (hist. Ser.) © British Museum (Natural History), 1987 '""•-C-'- '.;.,, t •••v.'. ISSN 0068-2306 Historical series 0565 ISBN 09003 8 Vol 14 No. 1 pp 1-141 British Museum (Natural History) Cromwell Road London SW7 5BD Issued 24 September 1987 I Darwin's Insects Charles Darwin's Entomological Notes, with an introduction and comments by Kenneth G.
    [Show full text]
  • Asymmetric Hindwing Foldings in Rove Beetles
    Asymmetric hindwing foldings in rove beetles Kazuya Saitoa,1, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea aInstitute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan; bGraduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; and cThe Kyushu University Museum, Fukuoka 812-8581, Japan Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 13, 2014 (received for review May 23, 2014) Foldable wings of insects are the ultimate deployable structures storage space (with some minor exceptions in soil- and cave- and have attracted the interest of aerospace engineering scientists dwelling species). The strategy is achieved by their extraordinary as well as entomologists. Rove beetles are known to fold their right–left asymmetric wing folding. As a result, rove beetles be- wings in the most sophisticated ways that have right–left asym- came highly diverse group, such that they account for 15% (i.e., metric patterns. However, the specific folding process and the rea- nearly 60,000 species) of all known species of Coleoptera. son for this asymmetry remain unclear. This study reveals how Despite the great potential of the process for engineering these asymmetric patterns emerge as a result of the folding pro- applications, few studies have been undertaken revealing the cess of rove beetles. A high-speed camera was used to reveal the details of this asymmetric wing folding. The wings of a rove beetle details of the wing-folding movement. The results show that these have two different crease patterns, but previous studies have characteristic asymmetrical patterns emerge as a result of simulta- described only one side.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • The First New Zealand Insects Collected on Cook's
    Pacific Science (1989), vol.43, 43, nono.. 1 © 1989 by UniversityUniversity of Hawaii Press.Pres s. All rights reserved TheThe First New Zealand Zealand InsectsInsects CollectedCollectedon Cook'sCook's Endeavour Voyage!Voyage! 2 J. R. H. AANDREWSNDREWS2 AND G.G . W. GIBBSGmBS ABSTRACT:ABSTRACT: The Banks collection of 40 insect species, species, described by J. J. C.C. Fabricius in 1775,1775, is critically examined to explore the possible methods of collection and to document changesto the inseinsectct fauna andto the original collection localities sincsincee 1769.The1769. The aassemblagessemblageof species is is regarded as unusual. unusual. It includes insects that are large large and colorful as well as those that are small and cryptic;cryptic; some species that were probably common were overlooked, but others that are today rare were taken.taken. It is concluded that the Cook naturalists caught about 15species with a butterfly net, but that the majority (all CoColeoptera)leoptera) were discoveredin conjunction with other biobiologicallogical specimens, especially plantsplants.. PossibPossiblele reasons for the omission ofwetwetasas,, stick insects, insects, etc.,etc., are discussed. discussed. This early collection shows that marked changesin abundance may have occurred in some speciespeciess since European colonizationcolonization.. One newrecord is is revealed:revealed: The cicada NotopsaltaNotopsaltasericea sericea (Walker) was found to be among the Fabricius speci­speci­ mens from New Zealand,Zealand, but itsits description evidentlyevidently
    [Show full text]
  • Uehara-Prado Marcio D.Pdf
    FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO INSTITUTO DE BIOLOGIA – UNICAMP Uehara-Prado, Marcio Ue3a Artrópodes terrestres como indicadores biológicos de perturbação antrópica / Marcio Uehara do Prado. – Campinas, SP: [s.n.], 2009. Orientador: André Victor Lucci Freitas. Tese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Indicadores (Biologia). 2. Borboleta . 3. Artrópode epigéico. 4. Mata Atlântica. 5. Cerrados. I. Freitas, André Victor Lucci. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. (rcdt/ib) Título em inglês: Terrestrial arthropods as biological indicators of anthropogenic disturbance. Palavras-chave em inglês : Indicators (Biology); Butterflies; Epigaeic arthropod; Mata Atlântica (Brazil); Cerrados. Área de concentração: Ecologia. Titulação: Doutor em Ecologia. Banca examinadora: André Victor Lucci Freitas, Fabio de Oliveira Roque, Paulo Roberto Guimarães Junior, Flavio Antonio Maës dos Santos, Thomas Michael Lewinsohn. Data da defesa : 21/08/2009. Programa de Pós-Graduação: Ecologia. iv Dedico este trabalho ao professor Keith S. Brown Jr. v AGRADECIMENTOS Ao longo dos vários anos da tese, muitas pessoas contribuiram direta ou indiretamente para a sua execução. Gostaria de agradecer nominalmente a todos, mas o espaço e a memória, ambos limitados, não permitem. Fica aqui o meu obrigado geral a todos que me ajudaram de alguma forma. Ao professor André V.L. Freitas, por sempre me incentivar e me apoiar em todos os momentos da tese, e por todo o ensinamento passado ao longo de nossa convivência de uma década. A minha família: Dona Júlia, Bagi e Bete, pelo apoio incondicional. A Cris, por ser essa companheira incrível, sempre cuidando muito bem de mim. A todas as meninas que participaram do projeto original “Artrópodes como indicadores biológicos de perturbação antrópica em Floresta Atlântica”, em especial a Juliana de Oliveira Fernandes, Huang Shi Fang, Mariana Juventina Magrini, Cristiane Matavelli, Tatiane Gisele Alves e Regiane Moreira de Oliveira.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • (Crustacea : Amphipoda) of the Lower Chesapeake Estuaries
    W&M ScholarWorks Reports 1971 The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries James Feely Virginia Institute of Marine Science Marvin L. Wass Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Feely, J., & Wass, M. L. (1971) The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries. Special papers in marine science No.2. Virginia Institute of Marine Science, College of William and Mary. http://doi.org/10.21220/V5H01D This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 VIRGIN IA INSTITUTE OF MARINE SC IE NCE Gloucester Point, Virginia 23062 1971 THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER 1 CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 1971 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 This document is in part a thesis by James B. Feeley presented to the School of Marine Science of the College of William and Mary in Virginia in partial fulfillment of the requirements for the degree of Master of Arts.
    [Show full text]
  • Asymmetric Hindwing Foldings in Rove Beetles
    Asymmetric hindwing foldings in rove beetles Kazuya Saitoa,1, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea aInstitute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan; bGraduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; and cThe Kyushu University Museum, Fukuoka 812-8581, Japan Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 13, 2014 (received for review May 23, 2014) Foldable wings of insects are the ultimate deployable structures storage space (with some minor exceptions in soil- and cave- and have attracted the interest of aerospace engineering scientists dwelling species). The strategy is achieved by their extraordinary as well as entomologists. Rove beetles are known to fold their right–left asymmetric wing folding. As a result, rove beetles be- wings in the most sophisticated ways that have right–left asym- came highly diverse group, such that they account for 15% (i.e., metric patterns. However, the specific folding process and the rea- nearly 60,000 species) of all known species of Coleoptera. son for this asymmetry remain unclear. This study reveals how Despite the great potential of the process for engineering these asymmetric patterns emerge as a result of the folding pro- applications, few studies have been undertaken revealing the cess of rove beetles. A high-speed camera was used to reveal the details of this asymmetric wing folding. The wings of a rove beetle details of the wing-folding movement. The results show that these have two different crease patterns, but previous studies have characteristic asymmetrical patterns emerge as a result of simulta- described only one side.
    [Show full text]