In-Datacenter Performance Analysis of a Tensor Processing UnitTM
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. -
AI Computer Wraps up 4-1 Victory Against Human Champion Nature Reports from Alphago's Victory in Seoul
The Go Files: AI computer wraps up 4-1 victory against human champion Nature reports from AlphaGo's victory in Seoul. Tanguy Chouard 15 March 2016 SEOUL, SOUTH KOREA Google DeepMind Lee Sedol, who has lost 4-1 to AlphaGo. Tanguy Chouard, an editor with Nature, saw Google-DeepMind’s AI system AlphaGo defeat a human professional for the first time last year at the ancient board game Go. This week, he is watching top professional Lee Sedol take on AlphaGo, in Seoul, for a $1 million prize. It’s all over at the Four Seasons Hotel in Seoul, where this morning AlphaGo wrapped up a 4-1 victory over Lee Sedol — incidentally, earning itself and its creators an honorary '9-dan professional' degree from the Korean Baduk Association. After winning the first three games, Google-DeepMind's computer looked impregnable. But the last two games may have revealed some weaknesses in its makeup. Game four totally changed the Go world’s view on AlphaGo’s dominance because it made it clear that the computer can 'bug' — or at least play very poor moves when on the losing side. It was obvious that Lee felt under much less pressure than in game three. And he adopted a different style, one based on taking large amounts of territory early on rather than immediately going for ‘street fighting’ such as making threats to capture stones. This style – called ‘amashi’ – seems to have paid off, because on move 78, Lee produced a play that somehow slipped under AlphaGo’s radar. David Silver, a scientist at DeepMind who's been leading the development of AlphaGo, said the program estimated its probability as 1 in 10,000. -
Received Citations As a Main SEO Factor of Google Scholar Results Ranking
RECEIVED CITATIONS AS A MAIN SEO FACTOR OF GOOGLE SCHOLAR RESULTS RANKING Las citas recibidas como principal factor de posicionamiento SEO en la ordenación de resultados de Google Scholar Cristòfol Rovira, Frederic Guerrero-Solé and Lluís Codina Nota: Este artículo se puede leer en español en: http://www.elprofesionaldelainformacion.com/contenidos/2018/may/09_esp.pdf Cristòfol Rovira, associate professor at Pompeu Fabra University (UPF), teaches in the Depart- ments of Journalism and Advertising. He is director of the master’s degree in Digital Documenta- tion (UPF) and the master’s degree in Search Engines (UPF). He has a degree in Educational Scien- ces, as well as in Library and Information Science. He is an engineer in Computer Science and has a master’s degree in Free Software. He is conducting research in web positioning (SEO), usability, search engine marketing and conceptual maps with eyetracking techniques. https://orcid.org/0000-0002-6463-3216 [email protected] Frederic Guerrero-Solé has a bachelor’s in Physics from the University of Barcelona (UB) and a PhD in Public Communication obtained at Universitat Pompeu Fabra (UPF). He has been teaching at the Faculty of Communication at the UPF since 2008, where he is a lecturer in Sociology of Communi- cation. He is a member of the research group Audiovisual Communication Research Unit (Unica). https://orcid.org/0000-0001-8145-8707 [email protected] Lluís Codina is an associate professor in the Department of Communication at the School of Com- munication, Universitat Pompeu Fabra (UPF), Barcelona, Spain, where he has taught information science courses in the areas of Journalism and Media Studies for more than 25 years. -
Machine Learning for Marketers
Machine Learning for Marketers A COMPREHENSIVE GUIDE TO MACHINE LEARNING CONTENTS pg 3 Introduction pg 4 CH 1 The Basics of Machine Learning pg 9 CH. 2 Supervised vs Unsupervised Learning and Other Essential Jargon pg 13 CH. 3 What Marketers can Accomplish with Machine Learning pg 18 CH. 4 Successful Machine Learning Use Cases pg 26 CH. 5 How Machine Learning Guides SEO pg 30 CH. 6 Chatbots: The Machine Learning you are Already Interacting with pg 36 CH. 7 How to Set Up a Chatbot pg 45 CH. 8 How Marketers Can Get Started with Machine Learning pg 58 CH. 9 Most Effective Machine Learning Models pg 65 CH. 10 How to Deploy Models Online pg 72 CH. 11 How Data Scientists Take Modeling to the Next Level pg 79 CH. 12 Common Problems with Machine Learning pg 84 CH. 13 Machine Learning Quick Start INTRODUCTION Machine learning is a term thrown around in technol- ogy circles with an ever-increasing intensity. Major technology companies have attached themselves to this buzzword to receive capital investments, and every major technology company is pushing its even shinier parentartificial intelligence (AI). The reality is that Machine Learning as a concept is as days that only lives and breathes data science? We cre- old as computing itself. As early as 1950, Alan Turing was ated this guide for the marketers among us whom we asking the question, “Can computers think?” In 1969, know and love by giving them simpler tools that don’t Arthur Samuel helped define machine learning specifi- require coding for machine learning. -
Fault Tolerance and Re-Training Analysis on Neural Networks
FAULT TOLERANCE AND RE-TRAINING ANALYSIS ON NEURAL NETWORKS by ABHINAV KURIAN GEORGE B.Tech Electronics and Communication Engineering Amrita Vishwa Vidhyapeetham, Kerala, 2012 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, Computer Engineering, College of Engineering and Applied Science, University of Cincinnati, Ohio 2019 Thesis Committee: Chair: Wen-Ben Jone, Ph.D. Member: Carla Purdy, Ph.D. Member: Ranganadha Vemuri, Ph.D. ABSTRACT In the current age of big data, artificial intelligence and machine learning technologies have gained much popularity. Due to the increasing demand for such applications, neural networks are being targeted toward hardware solutions. Owing to the shrinking feature size, number of physical defects are on the rise. These growing number of defects are preventing designers from realizing the full potential of the on-chip design. The challenge now is not only to find solutions that balance high-performance and energy-efficiency but also, to achieve fault-tolerance of a computational model. Neural computing, due to its inherent fault tolerant capabilities, can provide promising solutions to this issue. The primary focus of this thesis is to gain deeper understanding of fault tolerance in neural network hardware. As a part of this work, we present a comprehensive analysis of fault tolerance by exploring effects of faults on popular neural models: multi-layer perceptron model and convolution neural network. We built the models based on conventional 64-bit floating point representation. In addition to this, we also explore the recent 8-bit integer quantized representation. A fault injector model is designed to inject stuck-at faults at random locations in the network. -
In-Datacenter Performance Analysis of a Tensor Processing Unit
In-Datacenter Performance Analysis of a Tensor Processing Unit Presented by Josh Fried Background: Machine Learning Neural Networks: ● Multi Layer Perceptrons ● Recurrent Neural Networks (mostly LSTMs) ● Convolutional Neural Networks Synapse - each edge, has a weight Neuron - each node, sums weights and uses non-linear activation function over sum Propagating inputs through a layer of the NN is a matrix multiplication followed by an activation Background: Machine Learning Two phases: ● Training (offline) ○ relaxed deadlines ○ large batches to amortize costs of loading weights from DRAM ○ well suited to GPUs ○ Usually uses floating points ● Inference (online) ○ strict deadlines: 7-10ms at Google for some workloads ■ limited possibility for batching because of deadlines ○ Facebook uses CPUs for inference (last class) ○ Can use lower precision integers (faster/smaller/more efficient) ML Workloads @ Google 90% of ML workload time at Google spent on MLPs and LSTMs, despite broader focus on CNNs RankBrain (search) Inception (image classification), Google Translate AlphaGo (and others) Background: Hardware Trends End of Moore’s Law & Dennard Scaling ● Moore - transistor density is doubling every two years ● Dennard - power stays proportional to chip area as transistors shrink Machine Learning causing a huge growth in demand for compute ● 2006: Excess CPU capacity in datacenters is enough ● 2013: Projected 3 minutes per-day per-user of speech recognition ○ will require doubling datacenter compute capacity! Google’s Answer: Custom ASIC Goal: Build a chip that improves cost-performance for NN inference What are the main costs? Capital Costs Operational Costs (power bill!) TPU (V1) Design Goals Short design-deployment cycle: ~15 months! Plugs in to PCIe slot on existing servers Accelerates matrix multiplication operations Uses 8-bit integer operations instead of floating point How does the TPU work? CISC instructions, issued by host. -
Abstractions for Programming Graphics Processors in High-Level Programming Languages
Abstracties voor het programmeren van grafische processoren in hoogniveau-programmeertalen Abstractions for Programming Graphics Processors in High-Level Programming Languages Tim Besard Promotor: prof. dr. ir. B. De Sutter Proefschrift ingediend tot het behalen van de graad van Doctor in de ingenieurswetenschappen: computerwetenschappen Vakgroep Elektronica en Informatiesystemen Voorzitter: prof. dr. ir. K. De Bosschere Faculteit Ingenieurswetenschappen en Architectuur Academiejaar 2018 - 2019 ISBN 978-94-6355-244-8 NUR 980 Wettelijk depot: D/2019/10.500/52 Examination Committee Prof. Filip De Turck, chair Department of Information Technology Faculty of Engineering and Architecture Ghent University Prof. Koen De Bosschere, secretary Department of Electronics and Information Systems Faculty of Engineering and Architecture Ghent University Prof. Bjorn De Sutter, supervisor Department of Electronics and Information Systems Faculty of Engineering and Architecture Ghent University Prof. Jutho Haegeman Department of Physics and Astronomy Faculty of Sciences Ghent University Prof. Jan Lemeire Department of Electronics and Informatics Faculty of Engineering Vrije Universiteit Brussel Prof. Christophe Dubach School of Informatics College of Science & Engineering The University of Edinburgh Prof. Alan Edelman Computer Science & Artificial Intelligence Laboratory Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology ii Dankwoord Ik wist eigenlijk niet waar ik aan begon, toen ik in 2012 in de cata- comben van het Technicum op gesprek ging over een doctoraat. Of ik al eens met LLVM gewerkt had. Ondertussen zijn we vele jaren verder, werk ik op een bureau waar er wel daglicht is, en is het eindpunt van deze studie zowaar in zicht. Dat mag natuurlijk wel, zo vertelt men mij, na 7 jaar. -
P1360R0: Towards Machine Learning for C++: Study Group 19
P1360R0: Towards Machine Learning for C++: Study Group 19 Date: 2018-11-26(Post-SAN mailing): 10 AM ET Project: ISO JTC1/SC22/WG21: Programming Language C++ Audience SG19, WG21 Authors : Michael Wong (Codeplay), Vincent Reverdy (University of Illinois at Urbana-Champaign, Paris Observatory), Robert Douglas (Epsilon), Emad Barsoum (Microsoft), Sarthak Pati (University of Pennsylvania) Peter Goldsborough (Facebook) Franke Seide (MS) Contributors Emails: [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Reply to: [email protected] Introduction 2 Motivation 2 Scope 5 Meeting frequency and means 6 Outreach to ML/AI/Data Science community 7 Liaison with other groups 7 Future meetings 7 Conclusion 8 Acknowledgements 8 References 8 Introduction This paper proposes a WG21 SG for Machine Learning with the goal of: ● Making Machine Learning a first-class citizen in ISO C++ It is the collaboration of a number of key industry, academic, and research groups, through several connections in CPPCON BoF[reference], LLVM 2018 discussions, and C++ San Diego meeting. The intention is to support such an SG, and describe the scope of such an SG. This is in terms of potential work resulting in papers submitted for future C++ Standards, or collaboration with other SGs. We will also propose ongoing teleconferences, meeting frequency and locations, as well as outreach to ML data scientists, conferences, and liaison with other Machine Learning groups such as at Khronos, and ISO. As of the SAN meeting, this group has been officially created as SG19, and we will begin teleconferences immediately, after the US thanksgiving, and after NIPS. -
The Machine Learning Journey with Google
The Machine Learning Journey with Google Google Cloud Professional Services The information, scoping, and pricing data in this presentation is for evaluation/discussion purposes only and is non-binding. For reference purposes, Google's standard terms and conditions for professional services are located at: https://enterprise.google.com/terms/professional-services.html. 1 What is machine learning? 2 Why all the attention now? Topics How Google can support you inyour 3 journey to ML 4 Where to from here? © 2019 Google LLC. All rights reserved. What is machine0 learning? 1 Machine learning is... a branch of artificial intelligence a way to solve problems without explicitly codifying the solution a way to build systems that improve themselves over time © 2019 Google LLC. All rights reserved. Key trends in artificial intelligence and machine learning #1 #2 #3 #4 Democratization AI and ML will be core Specialized hardware Automation of ML of AI and ML competencies of for deep learning (e.g., MIT’s Data enterprises (CPUs → GPUs → TPUs) Science Machine & Google’s AutoML) #5 #6 #7 Commoditization of Cloud as the platform ML set to transform deep learning for AI and ML banking and (e.g., TensorFlow) financial services © 2019 Google LLC. All rights reserved. Use of machine learning is rapidly accelerating Used across products © 2019 Google LLC. All rights reserved. Google Translate © 2019 Google LLC. All rights reserved. Why all the attention0 now? 2 Machine learning allows us to solve problems without codifying the solution. © 2019 Google LLC. All rights reserved. San Francisco New York © 2019 Google LLC. All rights reserved. -
Understanding & Generalizing Alphago Zero
Under review as a conference paper at ICLR 2019 UNDERSTANDING &GENERALIZING ALPHAGO ZERO Anonymous authors Paper under double-blind review ABSTRACT AlphaGo Zero (AGZ) (Silver et al., 2017b) introduced a new tabula rasa rein- forcement learning algorithm that has achieved superhuman performance in the games of Go, Chess, and Shogi with no prior knowledge other than the rules of the game. This success naturally begs the question whether it is possible to develop similar high-performance reinforcement learning algorithms for generic sequential decision-making problems (beyond two-player games), using only the constraints of the environment as the “rules.” To address this challenge, we start by taking steps towards developing a formal understanding of AGZ. AGZ includes two key innovations: (1) it learns a policy (represented as a neural network) using super- vised learning with cross-entropy loss from samples generated via Monte-Carlo Tree Search (MCTS); (2) it uses self-play to learn without training data. We argue that the self-play in AGZ corresponds to learning a Nash equilibrium for the two-player game; and the supervised learning with MCTS is attempting to learn the policy corresponding to the Nash equilibrium, by establishing a novel bound on the difference between the expected return achieved by two policies in terms of the expected KL divergence (cross-entropy) of their induced distributions. To extend AGZ to generic sequential decision-making problems, we introduce a robust MDP framework, in which the agent and nature effectively play a zero-sum game: the agent aims to take actions to maximize reward while nature seeks state transitions, subject to the constraints of that environment, that minimize the agent’s reward. -
AI for Broadcsaters, Future Has Already Begun…
AI for Broadcsaters, future has already begun… By Dr. Veysel Binbay, Specialist Engineer @ ABU Technology & Innovation Department 0 Dr. Veysel Binbay I have been working as Specialist Engineer at ABU Technology and Innovation Department for one year, before that I had worked at TRT (Turkish Radio and Television Corporation) for more than 20 years as a broadcast engineer, and also as an IT Director. I have wide experience on Radio and TV broadcasting technologies, including IT systems also. My experience includes to design, to setup, and to operate analogue/hybrid/digital radio and TV broadcast systems. I have also experienced on IT Networks. 1/25 What is Artificial Intelligence ? • Programs that behave externally like humans? • Programs that operate internally as humans do? • Computational systems that behave intelligently? 2 Some Definitions Trials for AI: The exciting new effort to make computers think … machines with minds, in the full literal sense. Haugeland, 1985 3 Some Definitions Trials for AI: The study of mental faculties through the use of computational models. Charniak and McDermott, 1985 A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes. Schalkoff, 1990 4 Some Definitions Trials for AI: The study of how to make computers do things at which, at the moment, people are better. Rich & Knight, 1991 5 It’s obviously hard to define… (since we don’t have a commonly agreed definition of intelligence itself yet)… Lets try to focus to benefits, and solve definition problem later… 6 Brief history of AI 7 Brief history of AI . The history of AI begins with the following article: . -
Profiles in Innovation: Artificial Intelligence
EQUITY RESEARCH | November 14, 2016 Artificial intelligence is the apex technology of the information era. In the latest in our Profiles in Innovation Heath P. Terry, CFA series, we examine how (212) 357-1849 advances in machine [email protected] learning and deep learning Goldman, Sachs & Co. have combined with more Jesse Hulsing powerful computing and an (415) 249-7464 ever-expanding pool of data [email protected] to bring AI within reach for Goldman, Sachs & Co. companies across Mark Grant industries. The development (212) 357-4475 [email protected] of AI-as-a-service has the Goldman, Sachs & Co. potential to open new markets and disrupt the Daniel Powell (917) 343-4120 playing field in cloud [email protected] computing. We believe the Goldman, Sachs & Co. ability to leverage AI will Piyush Mubayi become a defining attribute (852) 2978-1677 of competitive advantage [email protected] for companies in coming Goldman Sachs (Asia) L.L.C. years and will usher in a Waqar Syed resurgence in productivity. (212) 357-1804 [email protected] Goldman, Sachs & Co. PROFILESIN INNOVATION Artificial Intelligence AI, Machine Learning and Data Fuel the Future of Productivity Goldman Sachs does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. For Reg AC certification and other important disclosures, see the Disclosure Appendix, or go to www.gs.com/research/hedge.html.