Abstractions for Programming Graphics Processors in High-Level Programming Languages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
R from a Programmer's Perspective Accompanying Manual for an R Course Held by M
DSMZ R programming course R from a programmer's perspective Accompanying manual for an R course held by M. Göker at the DSMZ, 11/05/2012 & 25/05/2012. Slightly improved version, 10/09/2012. This document is distributed under the CC BY 3.0 license. See http://creativecommons.org/licenses/by/3.0 for details. Introduction The purpose of this course is to cover aspects of R programming that are either unlikely to be covered elsewhere or likely to be surprising for programmers who have worked with other languages. The course thus tries not be comprehensive but sort of complementary to other sources of information. Also, the material needed to by compiled in short time and perhaps suffers from important omissions. For the same reason, potential participants should not expect a fully fleshed out presentation but a combination of a text-only document (this one) with example code comprising the solutions of the exercises. The topics covered include R's general features as a programming language, a recapitulation of R's type system, advanced coding of functions, error handling, the use of attributes in R, object-oriented programming in the S3 system, and constructing R packages (in this order). The expected audience comprises R users whose own code largely consists of self-written functions, as well as programmers who are fluent in other languages and have some experience with R. Interactive users of R without programming experience elsewhere are unlikely to benefit from this course because quite a few programming skills cannot be covered here but have to be presupposed. -
Parallel Functional Programming with APL
Parallel Functional Programming, APL Lecture 1 Parallel Functional Programming with APL Martin Elsman Department of Computer Science University of Copenhagen DIKU December 19, 2016 Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 1 / 18 Outline 1 Outline Course Outline 2 Introduction to APL What is APL APL Implementations and Material APL Scalar Operations APL (1-Dimensional) Vector Computations Declaring APL Functions (dfns) APL Multi-Dimensional Arrays Iterations Declaring APL Operators Function Trains Examples Reading Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 2 / 18 Outline Course Outline Teachers Martin Elsman (ME), Ken Friis Larsen (KFL), Andrzej Filinski (AF), and Troels Henriksen (TH) Location Lectures in Small Aud, Universitetsparken 1 (UP1); Labs in Old Library, UP1 Course Description See http://kurser.ku.dk/course/ndak14009u/2016-2017 Course Outline Week 47 48 49 50 51 1–3 Mon 13–15 Intro, Futhark Parallel SNESL APL (ME) Project Futhark (ME) Haskell (AF) (ME) (KFL) Mon 15–17 Lab Lab Lab Lab Project Wed 13–15 Futhark Parallel SNESL Invited APL Project (ME) Haskell (AF) Lecture (ME) / (KFL) (John Projects Reppy) Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 3 / 18 Introduction to APL What is APL APL—An Ancient Array Programming Language—But Still Used! Pioneered by Ken E. Iverson in the 1960’s. E. Dijkstra: “APL is a mistake, carried through to perfection.” There are quite a few APL programmers around (e.g., HIPERFIT partners). Very concise notation for expressing array operations. Has a large set of functional, essentially parallel, multi- dimensional, second-order array combinators. -
Programming Language
Programming language A programming language is a formal language, which comprises a set of instructions that produce various kinds of output. Programming languages are used in computer programming to implement algorithms. Most programming languages consist of instructions for computers. There are programmable machines that use a set of specific instructions, rather than general programming languages. Early ones preceded the invention of the digital computer, the first probably being the automatic flute player described in the 9th century by the brothers Musa in Baghdad, during the Islamic Golden Age.[1] Since the early 1800s, programs have been used to direct the behavior of machines such as Jacquard looms, music boxes and player pianos.[2] The programs for these The source code for a simple computer program written in theC machines (such as a player piano's scrolls) did not programming language. When compiled and run, it will give the output "Hello, world!". produce different behavior in response to different inputs or conditions. Thousands of different programming languages have been created, and more are being created every year. Many programming languages are written in an imperative form (i.e., as a sequence of operations to perform) while other languages use the declarative form (i.e. the desired result is specified, not how to achieve it). The description of a programming language is usually split into the two components ofsyntax (form) and semantics (meaning). Some languages are defined by a specification document (for example, theC programming language is specified by an ISO Standard) while other languages (such as Perl) have a dominant implementation that is treated as a reference. -
RAL-TR-1998-060 Co-Array Fortran for Parallel Programming
RAL-TR-1998-060 Co-Array Fortran for parallel programming 1 by R. W. Numrich23 and J. K. Reid Abstract Co-Array Fortran, formerly known as F−− , is a small extension of Fortran 95 for parallel processing. A Co-Array Fortran program is interpreted as if it were replicated a number of times and all copies were executed asynchronously. Each copy has its own set of data objects and is termed an image. The array syntax of Fortran 95 is extended with additional trailing subscripts in square brackets to give a clear and straightforward representation of any access to data that is spread across images. References without square brackets are to local data, so code that can run independently is uncluttered. Only where there are square brackets, or where there is a procedure call and the procedure contains square brackets, is communication between images involved. There are intrinsic procedures to synchronize images, return the number of images, and return the index of the current image. We introduce the extension; give examples to illustrate how clear, powerful, and flexible it can be; and provide a technical definition. Categories and subject descriptors: D.3 [PROGRAMMING LANGUAGES]. General Terms: Parallel programming. Additional Key Words and Phrases: Fortran. Department for Computation and Information, Rutherford Appleton Laboratory, Oxon OX11 0QX, UK August 1998. 1 Available by anonymous ftp from matisa.cc.rl.ac.uk in directory pub/reports in the file nrRAL98060.ps.gz 2 Silicon Graphics, Inc., 655 Lone Oak Drive, Eagan, MN 55121, USA. Email: -
Programming the Capabilities of the PC Have Changed Greatly Since the Introduction of Electronic Computers
1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in INTRODUCTION TO PROGRAMMING LANGUAGE Topic Objective: At the end of this topic the student will be able to understand: History of Computer Programming C++ Definition/Overview: Overview: A personal computer (PC) is any general-purpose computer whose original sales price, size, and capabilities make it useful for individuals, and which is intended to be operated directly by an end user, with no intervening computer operator. Today a PC may be a desktop computer, a laptop computer or a tablet computer. The most common operating systems are Microsoft Windows, Mac OS X and Linux, while the most common microprocessors are x86-compatible CPUs, ARM architecture CPUs and PowerPC CPUs. Software applications for personal computers include word processing, spreadsheets, databases, games, and myriad of personal productivity and special-purpose software. Modern personal computers often have high-speed or dial-up connections to the Internet, allowing access to the World Wide Web and a wide range of other resources. Key Points: 1. History of ComputeWWW.BSSVE.INr Programming The capabilities of the PC have changed greatly since the introduction of electronic computers. By the early 1970s, people in academic or research institutions had the opportunity for single-person use of a computer system in interactive mode for extended durations, although these systems would still have been too expensive to be owned by a single person. The introduction of the microprocessor, a single chip with all the circuitry that formerly occupied large cabinets, led to the proliferation of personal computers after about 1975. Early personal computers - generally called microcomputers - were sold often in Electronic kit form and in limited volumes, and were of interest mostly to hobbyists and technicians. -
Tangent: Automatic Differentiation Using Source-Code Transformation for Dynamically Typed Array Programming
Tangent: Automatic differentiation using source-code transformation for dynamically typed array programming Bart van Merriënboer Dan Moldovan Alexander B Wiltschko MILA, Google Brain Google Brain Google Brain [email protected] [email protected] [email protected] Abstract The need to efficiently calculate first- and higher-order derivatives of increasingly complex models expressed in Python has stressed or exceeded the capabilities of available tools. In this work, we explore techniques from the field of automatic differentiation (AD) that can give researchers expressive power, performance and strong usability. These include source-code transformation (SCT), flexible gradient surgery, efficient in-place array operations, and higher-order derivatives. We implement and demonstrate these ideas in the Tangent software library for Python, the first AD framework for a dynamic language that uses SCT. 1 Introduction Many applications in machine learning rely on gradient-based optimization, or at least the efficient calculation of derivatives of models expressed as computer programs. Researchers have a wide variety of tools from which they can choose, particularly if they are using the Python language [21, 16, 24, 2, 1]. These tools can generally be characterized as trading off research or production use cases, and can be divided along these lines by whether they implement automatic differentiation using operator overloading (OO) or SCT. SCT affords more opportunities for whole-program optimization, while OO makes it easier to support convenient syntax in Python, like data-dependent control flow, or advanced features such as custom partial derivatives. We show here that it is possible to offer the programming flexibility usually thought to be exclusive to OO-based tools in an SCT framework. -
Fault Tolerance and Re-Training Analysis on Neural Networks
FAULT TOLERANCE AND RE-TRAINING ANALYSIS ON NEURAL NETWORKS by ABHINAV KURIAN GEORGE B.Tech Electronics and Communication Engineering Amrita Vishwa Vidhyapeetham, Kerala, 2012 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, Computer Engineering, College of Engineering and Applied Science, University of Cincinnati, Ohio 2019 Thesis Committee: Chair: Wen-Ben Jone, Ph.D. Member: Carla Purdy, Ph.D. Member: Ranganadha Vemuri, Ph.D. ABSTRACT In the current age of big data, artificial intelligence and machine learning technologies have gained much popularity. Due to the increasing demand for such applications, neural networks are being targeted toward hardware solutions. Owing to the shrinking feature size, number of physical defects are on the rise. These growing number of defects are preventing designers from realizing the full potential of the on-chip design. The challenge now is not only to find solutions that balance high-performance and energy-efficiency but also, to achieve fault-tolerance of a computational model. Neural computing, due to its inherent fault tolerant capabilities, can provide promising solutions to this issue. The primary focus of this thesis is to gain deeper understanding of fault tolerance in neural network hardware. As a part of this work, we present a comprehensive analysis of fault tolerance by exploring effects of faults on popular neural models: multi-layer perceptron model and convolution neural network. We built the models based on conventional 64-bit floating point representation. In addition to this, we also explore the recent 8-bit integer quantized representation. A fault injector model is designed to inject stuck-at faults at random locations in the network. -
In-Datacenter Performance Analysis of a Tensor Processing Unit
In-Datacenter Performance Analysis of a Tensor Processing Unit Presented by Josh Fried Background: Machine Learning Neural Networks: ● Multi Layer Perceptrons ● Recurrent Neural Networks (mostly LSTMs) ● Convolutional Neural Networks Synapse - each edge, has a weight Neuron - each node, sums weights and uses non-linear activation function over sum Propagating inputs through a layer of the NN is a matrix multiplication followed by an activation Background: Machine Learning Two phases: ● Training (offline) ○ relaxed deadlines ○ large batches to amortize costs of loading weights from DRAM ○ well suited to GPUs ○ Usually uses floating points ● Inference (online) ○ strict deadlines: 7-10ms at Google for some workloads ■ limited possibility for batching because of deadlines ○ Facebook uses CPUs for inference (last class) ○ Can use lower precision integers (faster/smaller/more efficient) ML Workloads @ Google 90% of ML workload time at Google spent on MLPs and LSTMs, despite broader focus on CNNs RankBrain (search) Inception (image classification), Google Translate AlphaGo (and others) Background: Hardware Trends End of Moore’s Law & Dennard Scaling ● Moore - transistor density is doubling every two years ● Dennard - power stays proportional to chip area as transistors shrink Machine Learning causing a huge growth in demand for compute ● 2006: Excess CPU capacity in datacenters is enough ● 2013: Projected 3 minutes per-day per-user of speech recognition ○ will require doubling datacenter compute capacity! Google’s Answer: Custom ASIC Goal: Build a chip that improves cost-performance for NN inference What are the main costs? Capital Costs Operational Costs (power bill!) TPU (V1) Design Goals Short design-deployment cycle: ~15 months! Plugs in to PCIe slot on existing servers Accelerates matrix multiplication operations Uses 8-bit integer operations instead of floating point How does the TPU work? CISC instructions, issued by host. -
P1360R0: Towards Machine Learning for C++: Study Group 19
P1360R0: Towards Machine Learning for C++: Study Group 19 Date: 2018-11-26(Post-SAN mailing): 10 AM ET Project: ISO JTC1/SC22/WG21: Programming Language C++ Audience SG19, WG21 Authors : Michael Wong (Codeplay), Vincent Reverdy (University of Illinois at Urbana-Champaign, Paris Observatory), Robert Douglas (Epsilon), Emad Barsoum (Microsoft), Sarthak Pati (University of Pennsylvania) Peter Goldsborough (Facebook) Franke Seide (MS) Contributors Emails: [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Reply to: [email protected] Introduction 2 Motivation 2 Scope 5 Meeting frequency and means 6 Outreach to ML/AI/Data Science community 7 Liaison with other groups 7 Future meetings 7 Conclusion 8 Acknowledgements 8 References 8 Introduction This paper proposes a WG21 SG for Machine Learning with the goal of: ● Making Machine Learning a first-class citizen in ISO C++ It is the collaboration of a number of key industry, academic, and research groups, through several connections in CPPCON BoF[reference], LLVM 2018 discussions, and C++ San Diego meeting. The intention is to support such an SG, and describe the scope of such an SG. This is in terms of potential work resulting in papers submitted for future C++ Standards, or collaboration with other SGs. We will also propose ongoing teleconferences, meeting frequency and locations, as well as outreach to ML data scientists, conferences, and liaison with other Machine Learning groups such as at Khronos, and ISO. As of the SAN meeting, this group has been officially created as SG19, and we will begin teleconferences immediately, after the US thanksgiving, and after NIPS. -
Design and Implementation of an Array Language
Design and Implementation of an Array Language Bernd Ulmann V. 1.1, 03-AUG-2013 To my beloved wife Rikka. Acknowledgments This book would not have been possible without the support and help of many people. First of all, I would like to thank my wife Rikka Mitsam who never complained about the many hours I spent writing instead of being with her and did a lot of proofreading. I am also greatly indebted to Thomas Kratz who did most of the implementation of the Lang5-interpreter and the Array::DeepUtils module. I am particularly grateful for the support and help of Jens Breitenbach and Hans Franke show did a magnificent job at proof reading and made many valuable sugges- tions which greatly enhanced this booklet. In addition to that, I would like to thank Patrick Hedfeld for countless fruitful discus- sions about languages in general and programming languages and Lang5 in special. He also did a terrific job with writing the Lang5-Redbook. In addition to that he spotted many flaws and faults in this booklet which were corrected accordingly. ©Bernd Ulmann Contents 1 Introduction 1 1.1 Preliminaries. .1 1.2 Array languages. .1 2 The design of Lang5 7 2.1 Reverse Polish notation . .7 2.2 Dynamic typing . .9 2.3 Data structures . 10 3 Installing and running Lang5 13 3.1 Installation. 13 3.2 Starting the interpreter . 15 3.3 First steps . 17 4 Lang5 basics 21 4.1 Getting started . 21 4.2 Basic data structures . 22 4.3 Language elements. 24 4.3.1 Operators . -
AI Chips: What They Are and Why They Matter
APRIL 2020 AI Chips: What They Are and Why They Matter An AI Chips Reference AUTHORS Saif M. Khan Alexander Mann Table of Contents Introduction and Summary 3 The Laws of Chip Innovation 7 Transistor Shrinkage: Moore’s Law 7 Efficiency and Speed Improvements 8 Increasing Transistor Density Unlocks Improved Designs for Efficiency and Speed 9 Transistor Design is Reaching Fundamental Size Limits 10 The Slowing of Moore’s Law and the Decline of General-Purpose Chips 10 The Economies of Scale of General-Purpose Chips 10 Costs are Increasing Faster than the Semiconductor Market 11 The Semiconductor Industry’s Growth Rate is Unlikely to Increase 14 Chip Improvements as Moore’s Law Slows 15 Transistor Improvements Continue, but are Slowing 16 Improved Transistor Density Enables Specialization 18 The AI Chip Zoo 19 AI Chip Types 20 AI Chip Benchmarks 22 The Value of State-of-the-Art AI Chips 23 The Efficiency of State-of-the-Art AI Chips Translates into Cost-Effectiveness 23 Compute-Intensive AI Algorithms are Bottlenecked by Chip Costs and Speed 26 U.S. and Chinese AI Chips and Implications for National Competitiveness 27 Appendix A: Basics of Semiconductors and Chips 31 Appendix B: How AI Chips Work 33 Parallel Computing 33 Low-Precision Computing 34 Memory Optimization 35 Domain-Specific Languages 36 Appendix C: AI Chip Benchmarking Studies 37 Appendix D: Chip Economics Model 39 Chip Transistor Density, Design Costs, and Energy Costs 40 Foundry, Assembly, Test and Packaging Costs 41 Acknowledgments 44 Center for Security and Emerging Technology | 2 Introduction and Summary Artificial intelligence will play an important role in national and international security in the years to come. -
Shinjae Yoo Computational Science Initiative Outline
Lightning Overview of Machine Learning Shinjae Yoo Computational Science Initiative Outline • Why is Machine Learning important? • Machine Learning Concepts • Big Data and Machine Learning • Potential Research Areas 2 Why is Machine Learning important? 3 ML Application to Physics 4 ML Application to Biology 5 Machine Learning Concepts 6 What is Machine Learning (ML) • One of Machine Learning definitions • “How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?” Tom Mitchell, 2006 • Statistics: What conclusions can be inferred from data • ML incorporates additionally • What architectures and algorithms can be used to effectively handle data • How multiple learning subtasks can be orchestrated in a larger system, and questions of computational tractability 7 Machine Learning Components Algorithm Machine Learning HW+SW Data 8 Brief History of Machine Learning Speech Web Deep Blue N-gram Hadoop ENIAC Perceptron Recognition Browser Chess based MT 0.1.0 K-Means KNN 1950 1960 1970 1980 1990 2000 2010 1ST Chess WWW Data Driven Softmargin Image HMM GPGPU Learning Prog. invented ML SVM Net 2010 2011 2012 2013 2014 2015 2016 NN won ImageNet NN outperform IBM Watson AlphaGo with large margin human on ImageNet 9 Supervised Learning Pipeline Training Labeling Preprocessing Validate Data Cleansing Feature Engineering Normalization Testing Preprocessing Predict 10 Unsupervised Learning Pipeline Preprocessing Data Cleansing Feature Engineering Normalization Predict 11 Types of Learning 12 Types of Learning • Generative Learning 13 Types of Learning • Discriminative Learning 14 Types of Learning • Active Learning • How to select training data? 15 Types of Learning • Multi-task Learning 16 Types of Learning • Transfer Learning 17 Types of Learning • Kernel Learning • Metric Learning 18 Types of Learning • Kernel Learning • Metric Learning 19 Types of Learning • Kernel Learning • Metric Learning • Dimensionality Reduction 20 Types of Learning • Feature Learning 21 • Lee, et al.