University of Tartu, the Oldest and Largest in Estonia Founded in 1632 by King Gustavus Adolphus of Sweden 18 000 Students

Total Page:16

File Type:pdf, Size:1020Kb

University of Tartu, the Oldest and Largest in Estonia Founded in 1632 by King Gustavus Adolphus of Sweden 18 000 Students University of Tartu, The oldest and largest in Estonia Founded in 1632 by King Gustavus Adolphus of Sweden 18 000 students www.ut.ee Faculty of Science and Technology Includes Estonian Marine Institute www.sea.ee 1 Estonian Marine Institute, University of Tartu (locates in Tallinn) Dep. of marine systems about 10 employees head: Dr. Robert Aps a number of applied and EU projects Scientific research theme (2008-2013) head Dr. Ülo Suursaar The main task: Climate change induced decadal variations in hydrodynamic conditions and their influence on benthic habitats and coasts of the Estonian coastal sea 2 Tallinn Tartu 3 Material and methods: Physical geography & oceanography • Sea level and wind forcing data 1950-2011 (by EMHI) • Hydrodynamic measurements with RDCP at Neugrund and Sundgrund, etc. 2006-12: waves, currents, sea level, T, S, O2, turbidity • Hydrodynamic modelling of currents and sea level • Wave hindcast (reconstruction) based on measured (1966-2011) EMHI wind data; • Coastal geomorphic studies in co-operation with Tallinn Univ. o in situ surveys, GPS measurements in 2004-2011 o Dynamics of shorelines based on maps and ortophotos from 1900, 1935, 1939, 1947, 1961, 1981, 1998, 2005, 2008, 2010 o Analysis of erosion/ sedimentation volumes using MapInfo Material and methods: wind and sea level Wind and sea level data – both for forcing and statistics Ristna 1950-2011 Tallinn 1899-1995 Narva 1899-2011 Kunda 1950-2011 Vilsandi 1948-2011 Pärnu 1924-2011 Material and methods: deployment of hydrodynamic measuring equipment 3 MHz ADP (Sontek) 600 KHz RDCP (AADI Aanderaa) Material and methods: hydrodynamics Study of hydrodynamics using RDCP-600 (by AADI Aanderaa) Wave parameters (also for wave model calibration), currents, T, S, sea level, turbidity: ~900 days 2 3 6 1 4 5 Material and methods: sea level, currents Shallow sea 2D hydrodynamic model (Suursaar & Kullas, 2006); 1 km grid step; forced by Vilsandi wind data and open boundary (Ristna tide gauge) sea level - Verifications (below) - control run (realistic data) - scenario runs with modified forcings 180 (a) Rohuküla mod+60: AV=0.8, SD=24; meas: AV=1.8, SD=22 (cm) r=0.94 120 60 Sea level (cm) level Sea 0 -60 0 90 180 270 360 180 (b) Pärnu mod+60: AV=2.1, SD=28; meas: AV=3.2, SD=26 (cm) r=0.90 120 60 Sea level (cm) level Sea 0 -60 0 90 180 270 360 Hydrodynamic modelling Validation of the 2D model results regarding currents, measured using RDCP at Matsil in June- July 2011 u (W-E directed) and v v (S-N) component a 40 ] model measurement u -1 u 20 0 -20 current velocity [cm s [cm velocity current -40 0 5 10 15 20 25 30 35 40 b 40 time [days, from 13.06.2011] ] model measurement -1 20 v 0 -20 current velocity [cm s [cm velocity current -40 0 5 10 15 20 25 30 35 40 5 cm/sec time [days, from 13.06.2011] Material and methods: wave hindast . Wave hindcast using the SMB (Sverdrup-Munk-Bretschneider) type model (Seymour 1977; USACE 2002) . Calculates significant wave (Hs) parameters for the specific fetch-depth-limited location . Forced by wind speed, also depends on depth and fetch (calculated from wind direction as headwind distance to the shore) . Fetch is the length of water over which a given wind has blown, each point has its own specific angular distribution of fetches: 0.42 gF 0 2 0.375 0.0125 2 3401000 20 U gh U H 0.283 tanh 0.53 tanh 320 40 s 2 0.375 100 g U gh tanh 0.53 2 300 10 60 U 280 1 80 0.25 0,1 gF 0.375 0.077 260 100 U gh U 2 T 2.4 tanh 0.833 tanh s 2 0.375 g U gh 240 120 tanh 0.833 2 U 220 140 200 160 gT 2 2h 180 S Ls tanh 2 LS Fetches in different locations 100 120 80 x 60 2-20 100 150 1-10 250 x Hs sõltuvus fetsist (a), sügavusest (b) 150 a 3.5 5 256 km b 100 m 3 128 km 50 m 64 km 4 2.5 32 km 20 m 2 16 km 3 8 km 10 m 1.5 4 km 2 1 2 km 5 m wave height [m] height wave wave height [m] waveheight 1 km 1 0.5 2 m 0 0 11 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 wind speed [m s -1] wind speed [m s-1] Measured waves (and winds) near Harilaid RDCP, in 2006/07 . 3 d Hs = 3.2 m, max 4.6 m, 5-6 m 2 1 Signif. wave height (m) waveheightSignif. 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 24 Time (days, from 20.12.06) ) d W storm 14-15.01.2007; 23 m/s, gusts 33 m/s -1 18 12 6 Wind speed (m s (m speedWind 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Dets. Jaan. TimeVeeb. (days, from Märts 20.12.06) Aprill Mai Material and methods: wave hindast • Calibration of the SMB wave model against RDCP measurements at the two locations – very good results • Calibrated model used in 1966-2010 hindcast (w. 3 h step), so if we have extended our RDCP measurements back to 1966 3.2 model 2.4 measurement Vilsandi- Harilaid 1.6 calibration: wave height [m] height wave 0.8 5 months in 2006/07 0 (r=0.88, RMSE=0.23 m) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 time [days, from 20.12.2006] 3 a measurement: av=0.50, max=2.91 model: av=0.50, max=2.86 2 Letipea ps.-Kunda: r = 0.923 RMSE = 0.223 m calibration 40 d in 2006 st.RMSE = 7.8% 1 Verification 30 d in 2008 wave height [m] height wave (r=0.92, RMSE=0.22 m) 0 0 5 10 15 20 25 30 35 40 time [days, from 16.10.2006] Wave hindcasts 1966-2011 (with 1h/ 3h interval) - Average (Hs) probably decreased - High events (max, 99%) probably increased on westerly exposed coasts decreased on N and E exposed coasts 0.8 0.6 0.7 A Harilaid C Matsi-Kihnu E Letipea 0.7 0.6 1 0.5 5 0.6 0.5 0.4 Hs, m Hs, m Hs, Hs, m Hs, 0.5 0.4 0.3 0.4 0.3 2 0.3 0.2 0.2 1965 1975 1985 1995 2005 1965 1975 1985 1995 2005 1965 1975 1985 1995 2005 2.6 2.2 3.5 Year Year Year B Harilaid (99) D Matsi-Kihnu (99) F Letipea (99) 1 5 3 2.2 1.8 2.5 Hs, m Hs, Hs, m Hs, Hs, m Hs, 2 1.8 1.4 1.5 2 1.4 1 1 1965 1975 1985 1995 2005 1965 1975 1985 1995 2005 1965 1975 1985 1995 2005 Year Year Year 14 Tallinn Sea level variations 20 A Tallinn (1.8/0.1) cm , 0 Sea level Sea -20 1840 1860 1880 1900 1920 1940 1960 1980 2000 Longest series in Estonia, 1842 – 1995 Trend 0,1 mm/a Post-glacial Fennoscandian uplift up to 8 mm/a, in Estonia 0,5-2,5 mm/a, in Tallinn ~1,8 mm/a, Thus, sea level rise 0,1+1,8 = 1,9 mm/a Sea level, other locations B 60 Narva-Jõesuu (0.5+1.4) Local sea level trends 40 depend on local uplift rate Pärnu 20 (1.5+0.7) Corrected with uplift: 0 Virtsu (1.8+0.1) 10 - Narva cm (b) - Pärnu , -20 Heltermaa - Tallinn . (2.4+0.2) 0 - Ristna Sea level Sea -40 Rohuküla (2.4+0.1) Ristna -10 -60 Sea level (cm) Sealevel (cm) (2.6-1.1) Paldiski* -80 (2.6/-0.5) -20 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Time (year) -100 1890 1910 1930 1950 1970 1990 2010 Year Sea level rises in winter (climate change manifest in 60 winter conditions: Pärnu sea level 1924-2008: + 25 cm I, II, III (winter) temp., storminess) 30 0 Sea level (cm) level Sea -30 300 D Pärnu 1923-2011, range 400 cm y = 0.29x - 575 -60 150 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 60 Year Pärnu sea level 1924-2008: VII, VIII, IX (summer) + 2 cm 0 30 level, cm Sea 0 -150 J F M A M J J A S O N D Sea level (cm) level Sea Month -30 y = 0.02x - 30 -60 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Year Maxima 250 Pärnu 1923-2005 a=120.5 b=27.2 Trends in maxima are Narva 1899-2004 200 a=108.2 b=23.5 increasing fast Ristna 1950-2002 a=85.9 b=20.3 150 (4-6 mm/yr) Tallinn 1899-1995 a=76.3 b=14.1 100 Return periods and values Annual sea level maxima (cm) . level sea Annual 50 1 10 100 1000 Return period (yr) 250 Pärnu (trend slope 2.0 mm/y, land uplift 1.5 mm/yr) 300 e Ruhnu*1.1 wind; 200 250 Max Ventspils 275 level cm on cm , 200 9 JanuaryObserved 2005 150 Modelled (E) 150 Sea levelSea (cm) 100 Sea level Sea 100 50 50 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 0 2 4 6 8 10 12 Year Days (January 2005) Pärnu, Gudrun in Jan.
Recommended publications
  • Currents and Waves in the Northern Gulf of Riga
    doi:10.5697/oc.54-3.421 Currents and waves OCEANOLOGIA, 54 (3), 2012. in the northern Gulf of pp. 421–447. C Copyright by Riga: measurement and Polish Academy of Sciences, * Institute of Oceanology, long-term hindcast 2012. KEYWORDS Hydrodynamic modelling Water exchange Wave hindcast Wind climate RDCP Baltic Sea Ulo¨ Suursaar⋆ Tiit Kullas Robert Aps Estonian Marine Institute, University of Tartu, M¨aealuse 14, EE–12618 Tallinn, Estonia; e-mail: [email protected] ⋆corresponding author Received 27 February 2012, revised 19 April 2012, accepted 30 April 2012. Abstract Based on measurements of waves and currents obtained for a period of 302 days with a bottom-mounted RDCP (Recording Doppler Current Profiler) at two differently exposed locations, a model for significant wave height was calibrated separately for those locations; in addition, the Gulf of Riga-V¨ainameri 2D model was validated, and the hydrodynamic conditions were studied. Using wind forcing data from the Kihnu meteorological station, a set of current, water exchange and wave hindcasts were obtained for the period 1966–2011. Current patterns in the Gulf and in the straits were wind-dependent with characteristic wind switch directions. The Matsi coast was prone to upwelling in persistent northerly wind conditions. During the * The study was supported by the Estonian target financed project 0104s08, the Estonian Science Foundation grant No 8980 and by the EstKliima project of the European Regional Fund programme No 3.2.0802.11-0043. The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/ 422 U.¨ Suursaar, T. Kullas, R.
    [Show full text]
  • A Study of Hydrodynamic and Coastal Geomorphic Processes in Küdema Bay, the Baltic Sea
    Coastal Engineering 187 A study of hydrodynamic and coastal geomorphic processes in Küdema Bay, the Baltic Sea Ü. Suursaar1, H. Tõnisson2, T. Kullas1, K. Orviku3, A. Kont2, R. Rivis2 & M. Otsmann1 1Estonian Marine Institute, University of Tartu, Estonia 2Instititute of Ecology, Tallinn Pedagogical University, Estonia 3Merin Ltd., Estonia Abstract The aim of the paper is to analyze relationships between hydrodynamic and geomorphic processes in a small bay in the West-Estonian Archipelago. The area consists of a Silurian limestone cliff exposed to storm activity, and a dependent accumulative distal spit consisting of gravel and pebble. Changes in shoreline position have been investigated on the basis of large-scale maps, aerial photographs, topographic surveys and field measurements using GPS. Waves and currents were investigated using a Recording Doppler Current Profiler RDCP-600 deployed into Küdema Bay in June 2004 and the rough hydrodynamic situation was simulated using hydrodynamic and wave models. The main hydrodynamic patterns were revealed and their dependences on different meteorological scenarios were analyzed. It was found that due to exposure to prevailing winds (and waves induced by the longest possible fetch for the location), the spit elongates with an average rate of 14 m/year. Major changes take place during storms. Vitalization of shore processes is anticipated due to ongoing changes in the regional wind climate above the Baltic Sea. Keywords: shoreline changes, currents, waves, sea level, hydrodynamic models. 1 Introduction Estonia has a relatively long and strongly indented shoreline (3794 km; Fig. 1), therefore the knowledge of coastal processes is of large importance for WIT Transactions on The Built Environment, Vol 78, © 2005 WIT Press www.witpress.com, ISSN 1743-3509 (on-line) 188 Coastal Engineering sustainable development and management of the coastal zone.
    [Show full text]
  • Väikesaarte Rõõmud Ja Mured 2019
    Väikesaarte rõõmud ja mured Maa-ameti andmetel on Eestis üle 2000 saare. Enamik saartest on pindalalt aga niivõrd väikesed, et elatakse vaid üksikutel. Püsielanikega asustatud saared jagunevad kuue maakonna vahel. Meie riik eristab saartega suhtlemisel suursaari ja püsiasustusega väikesaari, kellele on kehtestatud teatud erisusi. Tänane ettekanne on koostatud just nende poolt kirja- pandu alusel. Koostas Linda Tikk [email protected] Abruka Saaremaa vald, Saaremaa Suurus: 8,8 km2 Rõõmud Soovid ja vajadused • SAAREVAHT olemas • Keskkonnakaitselisi probleeme pole eriti olnud,nüüd ILVES • Elekter - merekaabel Saaremaaga, • taastuvenergia - vaja päikesepaneelid • Püsiühendus Abruka-Roomassaare toimib, kuid talvise liikluskorralduse jaoks oleks vaja • Sadam kaasaegne • puudub seade kauba laadimiseks • . • • vaja kaatrile radar, öövaatlusseadmed Päästeteeistus toimib, kaater, 12 jne vabatahtlikku päästjat • Külateed tolmuvabaks • Teehooldus korras, • Internet kohe valmib • Haridus- kool ,lasteaed puudub • Pood puudub • • Kaladus 1 kutseline kalur, igas talus Perspektiivi oleks kutselistele kaluritele hobikalurid • Turismiga tegeleb 2 talu • Põllumajandus 250 veist pluss 100 Sisuliselt puudub veiste äraveo võimalus, lammast, 375 ha maad, PLK müük raskendatud hooldus • Toitlustus ja ehitus Aegna Tallinna kesklinna linnaosa, Harjumaa Suurus: 3,01 km2 Rõõmud Soovid ja vajadused Põhiline eluks vajalik saarel olemas Pääste puudulik, vajalik aastaringne päästevõimekus Heinlaid Hiiumaa vald, Hiiumaa Suurus: 1,62 km2 Soovid ja vajadused Vaja kommunikatsioone,
    [Show full text]
  • Estuarine, Coastal and Shelf Science 80 (2008) 31–41
    Estuarine, Coastal and Shelf Science 80 (2008) 31–41 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Field observations on hydrodynamic and coastal geomorphic processes off Harilaid Peninsula (Baltic Sea) in winter and spring 2006–2007 U¨ . Suursaar a,*, J. Jaagus b,A.Kontc, R. Rivis c,H.To˜nisson c a Estonian Marine Institute, University of Tartu, Ma¨ealuse 10a, Tallinn 12618, Estonia b Institute of Geography, University of Tartu, Vanemuise 46, Tartu 51014, Estonia c Institute of Ecology, Tallinn University, Narva 25, Tallinn 10120, Estonia article info abstract Article history: Investigations of multi-layer current regime, variations in sea level and wave parameters using a bottom- Received 30 April 2008 mounted RDCP (Recording Doppler Current Profiler) during 20 December 2006–23 May 2007 were Accepted 5 July 2008 integrated with surveys on changes of shorelines and contours of beach ridges at nearby Harilaid Available online 18 July 2008 Peninsula (Saaremaa Island). A W-storm with a maximum average wind speed of 23 m sÀ1 occurred on 14–15 January with an accompanying sea level rise of at least 100 cm and a significant wave height of Keywords: 3.2 m at the 14 m deep RDCP mooring site. It appeared that in practically tideless Estonian coastal waters, sea level Doppler-based ‘‘vertical velocity’’ measurements reflect mainly site-dependent equilibrium between currents waves resuspension and sedimentation. The mooring site, 1.5 km off the Kelba Spit of Harilaid, was located in vertical fluxes the accumulation zone, where downward fluxes dominated and fine sand settled.
    [Show full text]
  • Permanently Inhabited Small Islands Act
    Issuer: Riigikogu Type: act In force from: 20.06.2010 In force until: 31.08.2015 Translation published: 30.04.2014 Permanently Inhabited Small Islands Act Passed 11.02.2003 RT I 2003, 23, 141 Entry into force 01.01.2004 Amended by the following acts Passed Published Entry into force 22.02.2007 RT I 2007, 25, 133 01.01.2008 20.05.2010 RT I 2010, 29, 151 20.06.2010 Chapter 1 GENERAL PROVISIONS § 1. Area of regulation of Act This Act prescribes the specifications which arise from the special nature of the insular conditions of the permanently inhabited small island and which are not provided for in other Acts. § 2. Definitions used in Act In this Act, the following definitions are used: 1) island rural municipality– rural municipality which administers a permanently inhabited small island or an archipelago as a whole; [RT I 2007, 25, 133 - entry into force 01.01.2008] 2) rural municipality which includes small islands – rural municipality which comprises permanently inhabited small islands, but is not constituting part of island rural municipalities; 3) permanently inhabited small islands (hereinafter small islands) – Abruka, Kihnu, Kessulaid, Kõinastu, Manija, Osmussaar, Piirissaar, Prangli, Ruhnu, Vilsandi and Vormsi; [RT I 2007, 25, 133 - entry into force 01.01.2008] 4) large islands – Saaremaa, Hiiumaa and Muhu. 5) permanent inhabitation – permanent and predominant residing on a small island; [RT I 2007, 25, 133 - entry into force 01.01.2008] 6) permanent inhabitant – a person who permanently and predominantly resides on a small island and data on whose residence are entered in the population register to the accuracy of a settlement unit located on a small island.
    [Show full text]
  • Saare MAAKONNA Loodusväärtused Saare MAAKONNA Loodusväärtused 2 3
    SAARE MAAKONNA loodusväärtused SAARE MAAKONNA loodusväärtused 2 3 SISUKORD KAITSEALAD ................... 8 Odalätsi maastikukaitseala ....... 27 Vilsandi rahvuspark ............. 9 Panga maastikukaitseala ......... 27 Abruka looduskaitseala .......... 10 Üügu maastikukaitseala ......... 28 Laidevahe looduskaitseala ........ 11 HOIUALAD .................... 30 Liiva-Putla looduskaitseala ....... 12 Karala-Pilguse hoiuala ........... 31 Linnulaht .................... 13 Karujärve hoiuala .............. 31 Loode tammik ................ 14 Väikese väina hoiuala ........... 33 Rahuste looduskaitseala ......... 15 Viidumäe looduskaitseala ........ 16 KAITSEALUSED PARGID ........... 34 Viieristi looduskaitseala. 17 Kuressaare lossipark ............ 34 Järve luidete maastikukaitseala .... 20 Mihkel Ranna dendraarium ....... 34 Kaali maastikukaitseala .......... 20 Mõntu park .................. 35 Kaugatoma-Lõo maastikukaitseala .. 21 Pädaste park ................. 35 Kaart ....................... 22 ÜksikobjEKTID ................ 36 Kesselaiu maastikukaitseala ...... 25 Põlispuud ................... 36 Koigi maastikukaitseala .......... 25 Rändrahnud .................. 40 KAITSTAVATE LOODUSOBJEKTIDE VALITSEJA Keskkonnaamet Hiiu-Lääne-Saare regioon Tallinna 22, 93819 Kuressaare tel 452 7777 [email protected] www.keskkonnaamet.ee KAITSTAVATE LOODUSOBJEKTIDE KÜLASTUSE KORRALDAJA RMK loodushoiuosakond Viljandi mnt. 18b, 11216 Tallinn [email protected] www.rmk.ee Koostaja: Maris Sepp Trükise valmimisele aitasid kaasa: Kadri Paomees, Rein Nellis, Veljo
    [Show full text]
  • Tõnisson, H., Orviku, K., Lapinskis, J., Gulbinskas, S., and Zaromskis, R
    Text below is updated version of the chapter in book: Tõnisson, H., Orviku, K., Lapinskis, J., Gulbinskas, S., and Zaromskis, R. (2013). The Baltic States - Estonia, Latvia and Lithuania. Panzini, E. and Williams, A. (Toim.). Coastal erosion and protection in Europe (47 - 80). UK, US and Canada: Routledge. More can be found: Kont, A.; Endjärv, E.; Jaagus, J.; Lode, E.; Orviku, K.; Ratas, U.; Rivis, R.; Suursaar, Ü.; Tõnisson, H. (2007). Impact of climate change on Estonian coastal and inland wetlands — a summary with new results. Boreal Environment Research, 12, 653 - 671. It is also available online: http://www.borenv.net/BER/pdfs/ber12/ber12-653.pdf Introduction Estonia is located in a transition zone between regions having a maritime climate in the west and continental climate in the east and is a relatively small country (45,227 km2), but its geographical location between the Fenno-scandian Shield and East European Platform and comparatively long coastline (over 4000 km) due to numerous peninsulas, bays and islands (>1,500 island), results in a variety of shore types and ecosystems. The western coast is exposed to waves generated by prevailing westerly winds, with NW waves dominant along the north-facing segment beside the Gulf of Finland, contrasting with southern relatively sheltered sectors located on the inner coasts of islands and along the Gulf of Livonia (Riga). The coastline classification is based on the concept of wave processes straightening initial irregular outlines via erosion of Capes/bay deposition, or a combination (Orviku, 1974, Orviku and Granö, 1992, Gudelis, 1967). Much coast (77%) is irregular with the geological composition of Capes and bays being either hard bedrock or unconsolidated Quaternary deposits, notably glacial drift.
    [Show full text]
  • Lõputöö-Hookan-Lember.Pdf (2.127Mb)
    Sisekaitseakadeemia Päästekolledž Hookan Lember RS150 PÄÄSTESÜNDMUSTE ANALÜÜS PÜSIASUSTUSEGA VÄIKESAARTEL Lõputöö Juhendaja: Häli Allas MA Kaasjuhendaja: Andres Mumma Tallinn 2018 ANNOTATSIOON Päästekolledž Kaitsmine: juuni 2018 Töö pealkiri eesti keeles: Päästesündmuste analüüs püsiasustusega väikesaartel Töö pealkiri võõrkeeles: The analysis of rescue events on small islands with permanent settlements Lühikokkuvõte: Töö on kirjutatud eesti keeles ning eesti ja inglise keelse kokkuvõttega. Töö koos lisadega on kirjutatud kokku 61 lehel, millest põhiosa on 38 lehekülge. Lõputöö koosneb kolmest peatükist, kus on kasutatud kahte tabelit ja seitseteist joonist. Valitud teema uurimisprobleemiks on tervikliku ülevaate puudumine väikesaarte sündmustest, mis kuuluvad Päästeameti valdkonda. Väikesaartele toimub reageerimine erinevalt ning sõltuvalt aastaajast on reageerimine raskendatud. Ühtseid põhimõtteid rahvaarvu või sündmuste arvu kohta ei ole. Lõputöö eesmärk on analüüsida päästesündmusi väikesaartel aastatel 2009-2017 ning järeldada, millist päästevõimekust vajavad püsiasutustega väikesaared. Lõputöös antakse saartest ülevaade, mis on valimis välja toodud ning visualiseeritakse joonise abil saartel elavate püsielanike arv. Eesmärgi saavutamiseks kasutati kvantitatiivset uurimismeetodit, kus Häirekeskuselt saadud andmed korrastati ja analüüsiti. Lõputöös anti ülevaade, millised on sündmused saartel ning tehti järeldused, kuidas tagada kiire ja kvaliteetse abi kättesaadavus. Saartel, kus elanike arv on väike ning sündmuste arv minimaalne,
    [Show full text]
  • Rmk Annual Report 2014
    RMK ANNUAL REPORT 2014 ANNUAL REPORT 2014 3 ADDRESS BY THE CHAIRMAN OF THE BOARD 32-39 ACTIVITIES IN NATURE AND NATURE EDUCATION GROWING FOREST BENEFITS 3 POSSIBILITIES FOR MOVING IN NATURE 34 5 TEN FACTS ABOUT RMK 5 NATURE EDUCATION 36 SAGADI FOREST CENTRE 37 6-11 ABOUT THE ORGANISATION ELISTVERE ANIMAL PARK 38 NATURE CAMERA 38 ALL OVER ESTONIA 8 CHRISTMAS TREES 39 EMPLOYEES 9 HERITAGE CULTURE 39 ACKNOWLEDGEMENTS 10 COOPERATION PROJECTS 11 40-45 RESEARCH WORK 12-23 FOREST MANAGEMENT APPLIED RESEARCH PROJECTS 42 USE OF RESEARCH RESULTS 44 FOREST LAND OVERVIEW 14 SCHOLARSHIPS 45 CUTTING WORKS 15 FOREST RENEWAL 16 AFFORESTATION OF QUARRIES 18 46-51 FINANCIAL SUMMARY TIMBER MARKETING 18 FOREST IMPROVEMENT 20 BALANCE SHEET 48 WASTE COLLECTION 22 INCOME STATEMENT 50 FOREST FIRES 22 AUDITOR’S REPORT 51 HUNTING 23 24-31 NATURE PROTECTION DIVISION OF STATE FOREST 26 PROTECTED AREAS 26 SPECIES UNDER PROTECTION 27 KEY BIOTOPES 28 BIODIVERSITY 28 NATURE PROTECTION WORKS 29 PÕLULA FISH FARM 31 2 Address by the Chairman of the Board GROWING FOREST BENEFITS Aigar Kallas Chairman of the Management Board of RMK The RMK Development Plan 2015-2020 was laid be certain that Estonia’s only renewable natural down in 2014. The overall idea of the six strategic resource would be used wisely for the benefit of goals established with the Development Plan is the society of both today and tomorrow, and that that the forest, land and diverse natural values natural diversity would be preserved, both in the entrusted to RMK must bring greater and more di- protected as well as the managed forest.
    [Show full text]
  • Eestimaa Looduse Fond Vilsandi Rahvuspargi Kaitsekorralduskava
    ELF-i poolt Keskkonnaametile üle antud kinnitamata versioon Eestimaa Looduse Fond Vilsandi rahvuspargi kaitsekorralduskava aastateks 2011-2020 Liis Kuresoo ja Kaupo Kohv Tartu-Vilsandi 2010 ELF-i poolt Keskkonnaametile üle antud kinnitamata versioon SISUKORD Sissejuhatus ..................................................................................................................................... 6 1 Vilsandi rahvuspargi iseloomustus ......................................................................................... 8 1.1 Vilsandi rahvuspargi asend .......................................................................................... 8 1.2 Vilsandi rahvuspargi geomorfoloogiline ja bioloogiline iseloomustus ....................... 8 1.3 Vilsandi rahvuspargi kaitse-eesmärk, kaitsekord ja rahvusvaheline staatus................ 8 1.4 Maakasutus ja maaomand ............................................................................................ 9 1.5 Huvigrupid ................................................................................................................. 13 1.6 Vilsandi rahvuspargi visioon ..................................................................................... 16 2 Väärtused ja kaitse-eesmärgid .............................................................................................. 17 Elustik ........................................................................................................................................... 17 2.1 Linnustik ...................................................................................................................
    [Show full text]
  • V Ä I N a M E
    LEGEND Ring ümber Hiiumaa 9. Hiiumaa Militaarmuuseum 19. Kuriste kirik Turismiinfokeskus; turismiinfopunkt 1. Põlise leppe kivid 10. Mihkli talumuuseum 20. Elamuskeskus Tuuletorn Sadam; lennujaam Tahkuna nina Tahkuna 2. Pühalepa kirik 11. Reigi kirik 21. Käina kiriku varemed Haigla; apteek looduskaitseala 14 3. Suuremõisa loss 12. Kõrgessaare – Viskoosa 22. Orjaku linnuvaatlustorn Kirik; õigeusukirik Tahkuna 4. Soera talumuuseum ja Mõis; kalmistu 13. Kõpu tuletorn 23. Orjaku sadam kivimitemaja Huvitav hoone; linnuse varemed 14. Ristna tuletorn 24. Kassari muuseum 5. Kärdla Mälestusmärk: sündmusele; isikule 15. Kalana 25. Sääretirp Tahkuna ps Lehtma 6. Kärdla sadam Skulptuur; arheoloogiline paik Meelste Suurjärv 16. Vanajõe org 26. Kassari kabel ja kabeliaed 7. Ristimägi RMK külastuskeskus; allikas 14 17. Sõru sadam ja muuseum 27. Vaemla villavabrik Kauste 8. Tahkuna tuletorn Austurgrunne Pinnavorm; looduslik huviväärsus 18. Emmaste kirik Meelste laht Park; üksik huvitav puu Hiiu madal 50 Tjuka (Näkimadalad) Suursäär Tõrvanina R Rändrahn; ilus vaade Kodeste ä l Mangu Kersleti b (Kärrslätt) y Metsaonn; lõkkekoht 82 l Malvaste a 50 Ta Tareste mka Kakralaid Borrby h 50 Mudaste res t Karavaniparkla; telkimiskoht te Ogandi o Kootsaare ps Matkarada; vaatetorn Sigala Saxby Tareste KÄRDLA Diby Vissulaid 50 Vormsi Tuulik; tuugen Fällarna Reigi laht Risti 80 välijõusaal Rälby Reigi Roograhu H Kroogi Hausma 50 Tuletorn; mobiilimast Ninalaid Posti Rootsi Kidaste Huitberg 50 Muuseum; kaitserajatis Ninaots a Kanapeeksi Heilu Förby 13 Linnumäe Suuremõisa
    [Show full text]
  • Wave Climate and Coastal Processes in the Osmussaar–Neugrund Region, Baltic Sea
    Coastal Processes II 99 Wave climate and coastal processes in the Osmussaar–Neugrund region, Baltic Sea Ü. Suursaar1, R. Szava-Kovats2 & H. Tõnisson3 1Estonian Marine Institute, University of Tartu, Estonia 2Institute of Ecology and Earth Sciences, University of Tartu, Estonia 3Institute of Ecology, Tallinn University, Estonia Abstract The aim of the paper is to investigate hydrodynamic conditions in the Neugrund Bank area from ADCP measurements in 2009–2010, to present a local long-term wave hindcast and to study coastal formations around the Neugrund. Coastal geomorphic surveys have been carried out since 2004 and analysis has been performed of aerial photographs and old charts dating back to 1900. Both the in situ measurements of waves and currents, as well as the semi-empirical wave hindcast are focused on the area known as the Neugrund submarine impact structure, a 535 million-years-old meteorite crater. This crater is located in the Gulf of Finland, about 10 km from the shore of Estonia. The depth above the central plateau of the structure is 1–15 m, whereas the adjacent sea depth is 20– 40 m shoreward and about 60 m to the north. Limestone scarp and accumulative pebble-shingle shores dominate Osmussaar Island and Pakri Peninsula and are separated by the sandy beaches of Nõva and Keibu Bays. The Osmussaar scarp is slowly retreating on the north-western and northern side of the island, whereas the coastline is migrating seaward in the south as owing to formation of accumulative spits. The most rapid changes have occurred either during exceptionally strong single storms or in periods of increased cyclonic and wave activity, the last high phase of which occurred in 1980s–1990s.
    [Show full text]