Population Genetics of the Wild Yeast Saccharomyces Paradoxus

Total Page:16

File Type:pdf, Size:1020Kb

Population Genetics of the Wild Yeast Saccharomyces Paradoxus Copyright 2004 by the Genetics Society of America Population Genetics of the Wild Yeast Saccharomyces paradoxus Louise J. Johnson,*,1 Vassiliki Koufopanou,* Matthew R. Goddard,† Richard Hetherington,* Stefanie M. Scha¨fer*,2 and Austin Burt* *Department of Biological Sciences and †NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot SL5 7PY, United Kingdom Manuscript received November 4, 2002 Accepted for publication September 22, 2003 ABSTRACT Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km2 sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population Extensive incompatibilities .%0.3ف structure, and linkage disequilibrium. Synonymous site diversity is between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species. ANY fields in biology have progressed by the con- are escaped domestics or otherwise greatly affected by M centrated study of a select group of model sys- human activity (Vaughan-Martini and Martini 1995; tems. In population and evolutionary genetics, only a Naumov et al. 1992a). This could greatly affect their few species such as Drosophila and humans have been population genetics, severely complicating interpreta- widely adopted, and it might make sense to consider tions and reducing the extent to which lessons learned what other taxa might best complement these. The yeast with this species are likely to be widely applicable. For Saccharomyces cerevisiae has a number of characteristics example, one survey of S. cerevisiae in wineries revealed that would seem to make it ideal (Zeyl 2000): (i) It is some surprising findings, including 31% of strains het- already a well-studied model system in biochemistry, cell erozygous for a lethal mutation and 23% heterozygous biology, classical genetics, and molecular biology; (ii) or homozygous for heterothallism, i.e., an inability to genomes can be precisely altered by homologous recom- undergo mating-type switching (Mortimer 2000). The bination; and (iii) long-term experiments with large association between Drosophila and humans has posed population sizes and sensitive fitness assays are readily similar problems (Andolfatto and Przeworski 2000; possible in the laboratory. These features suggest that Wall et al. 2002). one may be more likely to be able to investigate and One way to circumvent this problem would be to study interpret the functional significance of natural DNA a close relative that has the same advantages, but not sequence variation in this species than in any other the disadvantage. S. paradoxus is (along with S. cario- eukaryote. Moreover, it has a relatively small and gene- canus) the closest known relative of S. cerevisiae (God- rich genome, reducing the size of the problem to be dard and Burt 1999). The two species appear to be solved. However, there is a problem: S. cerevisiae has biochemically indistinguishable (Barnett et al. 1990), long been associated with humans, and in collecting have the same chromosome number, and appear to be strains it is difficult to determine to what extent they largely syntenic (Naumov et al. 1992b). Growth prefer- ences in the lab are the same as for S. cerevisiae, and genetic engineering by the same homologous gene re- placement methods used in S. cerevisiae is possible (E. Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AJ515177– Louis, personal communication). Thus, many of the AJ515216, AJ515322–AJ515352, and AJ515430–AJ515449. advantages still apply. Moreover, it has been isolated 1Corresponding author: Institute of Genetics, University of Notting- from many natural locations worldwide (e.g., Sniegow- ham, Queens Medical Centre, Nottingham NG7 2UH, United King- dom. E-mail: [email protected] ski et al. 2002) and apparently has not been widely 2Present address: Department of Infectious Disease Epidemiology, domesticated. Gene flow between S. cerevisiae and S. Imperial College, London W2 1PG, United Kingdom. paradoxus is also unlikely; hybrids can be formed, but Genetics 166: 43–52 ( January 2004) 44 L. J. Johnson et al. are almost completely sterile (Naumov et al. 1997a). cerevisiae strains with substantial variability within each species. Overall DNA sequence divergence between the two spe- The initial collection of 344 bark scrapings yielded 28 isolates. Other strains: The Centraalbureau voor Schimmelcultures ف cies is thought to be 20% (Herbert et al. 1988), and (CBS) supplied CBS 432, the type strain of S. paradoxus, and synonymous site divergence at the loci studied here is the Danish lab strain CBS 5829, here referred to as “Type” .and “Danish,” respectively .%30ف In the laboratory, the life cycle of S. paradoxus is the Two S. paradoxus isolates from the Russian Far East (FE), same as that of S. cerevisiae (Herskowitz 1988). It nor- CBS 8436 and CBS 8444, were included for comparison. These isolates differ from European S. paradoxus at allozyme loci -synonymous site diver %5ف mally reproduces mitotically as a diploid, but when (Naumov et al. 1997b) and show starved of nitrogen undergoes meiosis and produces gence from the type strain of S. paradoxus at the six sequenced four haploid spores encapsulated in an ascus. There are loci. These strains, referred to herein as FE1 and FE2, respec- two mating types, and the spores usually mate within tively, were kindly provided by Edward Louis. All S. cerevisiae the ascus upon germination, but if this does not happen, sequence data were from the Yeast Genome Project (Goffeau et al. 1996). they are able to reproduce mitotically as haploids. Hap- Phenotypic assays: To isolate individual spores for pheno- loid cells are constitutively ready to mate and can out- typic assays, all wild isolates were grown on sporulation me- cross. However, haploid mitoses are associated with a dium for 4 days, and resultant asci were enzymatically digested sophisticated mechanism of mating-type switching, with (10 min in a 50-␮l solution of 10 mg/ml sulfanotase, 10 mg/ Њ the result that cells can also mate with their clonemates, ml lyticase at 25 ). Individual spores were removed with a Zeiss micromanipulator and incubated at 25Њ for 4 days on YPD producing an entirely homozygous diploid (“autodiploi- agar to allow colony growth. Colonies were replica plated to dization”). Thus, S. paradoxus may undergo two types minimal and sporulation media and after 3 days examined of self-fertilization: intra-ascus mating and autodiploidi- for growth or surveyed by microscopy for the presence of zation. For a review of ascomycete mating systems, see tetrads. The presence of tetrads was considered indicative Nelson (1996). of mating-type switching. All media were made according to Sherman (1991). In this article we describe a preliminary investigation Molecular methods: Nine wild isolates were chosen ran- into the genetics of a single population of S. paradoxus, domly for an initial survey of sequence variation. Total DNA focusing on quantifying levels of nucleotide variation was extracted (Sherman 1991) and diluted 100-fold for use and analyzing the pattern of variation to infer mating as a PCR template. Six genes involved in mate recognition system (and, to a lesser extent, dispersal). were amplified from the nine wild isolates and from the Type strain, Danish, FE1, and FE2 isolates. Details of genes and primers are given in Table 1. All 28 wild isolates were then genotyped at polymorphic sites by restriction at the MFA1 and MATERIALS AND METHODS AGA2 loci, using enzymes Tsp451 and AseI, respectively, and by sequencing fragments of MF␣1, SAG1, STE2, and STE3. Collections: S. paradoxus was isolated from the bark of oak Microsatellite locus: Twenty S. cerevisiae microsatellite trees (Quercus, mainly Quercus robur; Naumov et al. 1998) in primer pairs (Field and Wills 1998) were tested on S. para- ف Silwood Park and Windsor Great Park. Bark scrapings ( 1g) doxus. Of these only 3 gave a PCR product with S. paradoxus, were collected from 86 oak trees on each of two dates, with and 1 was found to be polymorphic, a variable-length repeat two scrapings on opposite sides of the tree on each date. in the TFA1 gene (chromosome XI in S. cerevisiae). The wild Scrapings were aseptically transferred to acidified malt me- isolates were genotyped at this locus by polyacrylamide gel dium [5% malt extract (Sigma, Dorset, UK), 0.4% lactic acid electrophoresis of radioactively end-labeled PCR products (Sigma) w/v] in loosely capped vials and shaken for 2 days (Sambrook et al. 1989). A representative of each mobility Њ at 30 . Many types of microbe were present in the medium so group was sequenced to determine the length of each allele. a selection procedure was incorporated to isolate S. paradoxus. Statistical analysis and software used: Nucleotide diversity Dilutions of the 48-hr culture were plated on acidified malt ␲ at synonymous and nonsynonymous sites, and synonymous and incubated for 24 hr at 30Њ. The resulting colony-forming site divergence, were calculated using DnaSP (Rozas and Rozas units were visually inspected and colonies looking like S.
Recommended publications
  • Evolution of Genetic Systems in Filamentous Ascomycetes
    Evolution of Genetic Systems in Filamentous Ascomycetes Evolutie van genetische systemen in hyphenvormende zakjeszwammen 0000 0513 3836 Promotor: dr. R.F. Hoekstra hoogleraar in de populatie- en kwantitatieve genetica fjtfoiißi f ßin Maarten J. Nauta Evolution of Genetic Systems in Filamentous Ascomycetes Proefschrift ter verkrijging van de graad van doctor in de landbouw- en milieuwetenschappen op gezag van de rector magnificus, dr. C.M. Karssen, in het openbaar te verdedigen op woensdag 12januar i 1994 des namiddags te vier uur in de Aula van de Landbouwuniversiteit te Wageningen. 15 0 S(p^ZJ> These investigations were supported by the Netherlands Organization for Scientific Research (N.W.O.). BibUt/FHEEK LAMDbOirWUNIVERSITEJi. WAGE NINGE N CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Nauta, Maarten J. Evolution of genetic systems in filamentous ascomycetes / Maarten J. Nauta. - [ S.l. : s.n.]. -111 . Thesis Wageningen. - With ref. - With summary in Dutch. ISBN 90-5485-199-6 Subject headings: population genetics / ascomycetes. omslagontwerp: Ernst van Cleef foto omslag: Barrages tussen verschillende stammen van Podospora anserina als gevolg van vegetatieve incompatibiliteit. (met dank aan Inge Haspels) aan mijn ouders Voorwoord Dit proefschrift is het resultaat van vier jaar onderzoek, verricht bij de vakgroep Erfelijkheidsleer van de Landbouwuniversiteit in Wageningen. In zekere zin valt zo'n proefschrift te vergelijken met een levend wezen. Uit de genetica is bekend dat de verschijningsvorm van elk levend wezen tot stand komt door een combinatie van erfelijke aanleg en invloeden uit de omgeving. Voor een proefschrift geldt eigenlijk hetzelfde: Zowel het werk van de auteur, als de bijdragen van zijn omgeving zijn onontbeerlijk om tot een verschijningsvorm te komen.
    [Show full text]
  • Evolutionary Pathways to Self-Fertilization in a Tristylous Plant
    Review BlackwellOxford,NPHNew0028-646X1469-8137©293710.1111/j.1469-8137.2009.02937.xJune0546???556???ResearchXX The 2009Phytologist Authors UK Review Publishing (2009). Ltd Journal compilation © New Phytologist (2009) Research reviewXX Evolutionary pathways to self- fertilization in a tristylous plant species Author for correspondence: Spencer C. H. Barrett, Rob W. Ness and Mario Vallejo-Marín Spencer C. H. Barrett Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Tel: +1 416 978 5603 Email: [email protected] Ontario, Canada, M5S 3B2 Received: 23 April 2009 Accepted: 20 May 2009 Summary New Phytologist (2009) 183: 546–556 Evolutionary transitions from outcrossing to selfing occur commonly in heterostylous doi: 10.1111/j.1469-8137.2009.02937.x genera. The morphological polymorphisms that characterize heterostyly provide opportunities for different pathways for selfing to evolve. Here, we investigate the Key words: developmental instability, origins and pathways by which selfing has evolved in tristylous Eichhornia paniculata Eichhornia, herkogamy, heterostyly, multiple by providing new evidence based on morphology, DNA sequences and genetic analysis. origins, pathways to self-fertilization. The primary pathway from outcrossing to selfing involves the stochastic loss of the short-styled morph (S-morph) from trimorphic populations, followed by the spread of selfing variants of the mid-styled morph (M-morph). However, the discovery of selfing variants of the long-styled morph (L-morph) in Central America indicates a secondary pathway and distinct origin for selfing. Comparisons of multi-locus nucleo- tide sequences from 27 populations sampled from throughout the geographical range suggest multiple transitions to selfing. Genetic analysis of selfing variants of the L- and M-morphs demonstrates recessive control of the loss of herkogamy, although the number of factors appears to differ between the forms.
    [Show full text]
  • Genetic Diversity in Partially Selfing Populations with the Stepping-Stone Structure
    Heredity 77 (1996) 469—475 Received 20 October 1995 Genetic diversity in partially selfing populations with the stepping-stone structure HIDENORI TACHIDA*t & HIROSHI YOSHIMARU tDepartment of Biology, Faculty of Science, Kyushu University 33, Fukuoka 812, Japan and tPopulation Genetics Laboratory, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305, Japan Amethod to compute identity coefficients of two genes in the stepping-stone model with partial selfing is developed. The identity coefficients in partially selfing populations are computed from those in populations without selfing as functions of s (selfing rate), m (migra- tion rate), N (subpopulation size), n (number of subpopulations) and u (mutation rate). For small m, 1/N and u, it is shown that approximate formulae for the identity coefficients of two genes from different individuals are the same as those in random mating populations if we replace N in the latter with N(1 —s12).Thus,the effects of selfing on genetic variability are summarized as reducing variation within subpopulations and increasing differentiation among subpopulations by reducing the subpopulation size. The extent of biparental inbreeding as measured by the genotypic correlation between truly outcrossed mates was computed in the one-dimensional stepping-stone model. The correlation was shown to be independent of the selfing rate and starts to fall off as the migration rate increases when mN is larger than 0.1. Keywords:biparentalinbreeding, fixation index, genetic variability, geographical differentia- tion, selfing, stepping-stone model. Introduction Model analysis Manyplant species are partially self-fertilizing Genesare defined to be identical by descent if they (Brown, 1990; Murawski & Hamrick, 1991, 1992; have a common ancestor gene and there is no muta- Kitamura et a!., 1994).
    [Show full text]
  • Inbreeding Depression in Two Populations of Arenaria Uni¯Ora (Caryophyllaceae) with Contrasting Mating Systems
    Heredity 86 (2001) 184±194 Received 16 November 1999, accepted 17 October 2000 Inbreeding depression in two populations of Arenaria uni¯ora (Caryophyllaceae) with contrasting mating systems LILA FISHMAN Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544 U.S.A. I used parallel family-structured crossing designs to investigate the relative performance of self and outcross progeny in sel®ng and predominantly outcrossing populations of the annual plant Arenaria uni¯ora. The selfer population experienced much lower inbreeding depression (d 0.05 0.02 SE) than the outcrossers (d 0.19 0.02 SE). The negative association between genetic load and sel®ng rate suggests that purgable partially recessive alleles are the primary source of inbreeding depression, as does its late expression in both populations. Inbreeding depression in the selfer population, which naturally consists of highly inbred lines, was used to calculate the mean dominance (h 0.33) and incidence rate (U 0.30) of deleterious mutations. In the outcrosser population, signi®cant variation among individuals in the expression of inbreeding depression may re¯ect lineage-speci®c dierences in inbreeding history or, more probably, random variation in mutational load. The low (0.5) inbreeding depression of outcrossers suggests that the maintenance of a mixed mating system in some A. uni¯ora populations and the evolution of nearly cleistogamous self-pollination in others may re¯ect local pollinator-mediated selection for sel®ng rather than the constant 3:2 genetic advantage invoked by many models. Keywords: Arenaria uni¯ora, genetic load, inbreeding depression, mating system, sel®ng.
    [Show full text]
  • Clonal Reproduction in Fungi COLLOQUIUM
    PAPER Clonal reproduction in fungi COLLOQUIUM John W. Taylora,1, Christopher Hann-Sodena, Sara Brancoa, Iman Sylvaina, and Christopher E. Ellisonb Departments of aPlant and Microbial Biology and bIntegrative Biology, University of California, Berkeley, CA 94720 Edited by John C. Avise, University of California, Irvine, CA, and approved April 2, 2015 (received for review February 17, 2015) Research over the past two decades shows that both recombina- Clearly, mycologists have more work to do with these extremely tion and clonality are likely to contribute to the reproduction of all important fungi. fungi. This view of fungi is different from the historical and still commonly held view that a large fraction of fungi are exclusively Population Genetic Evidence for Recombination clonal and that some fungi have been exclusively clonal for Evidence that clonality was not limited to Glomales but instead hundreds of millions of years. Here, we first will consider how was widespread in fungi came from the oft-cited statistic that these two historical views have changed. Then we will examine 20% of fungi are asexual (12). This fraction represented the the impact on fungal research of the concept of restrained re- number of fungi for which sexual reproduction had not been combination [Tibayrenc M, Ayala FJ (2012) Proc Natl Acad Sci USA observed or was rarely observed. At a time when observation of 109 (48):E3305–E3313]. Using animal and human pathogenic fungi, the sexual morphology of a fungus was required for its classifi- we examine extrinsic restraints on recombination associated with cation, these fungi were classified in the Deuteromycota, apart bottlenecks in genetic variation caused by geographic dispersal from sexual fungi.
    [Show full text]
  • Evolution of Mating Systems: Outcrossing Versus Selfing Spencer C
    In The Princeton Guide to Evolution ed. J. Losos. Princeton University Press, Princeton, New Jersey, pp. 356-362. IV.8 Evolution of Mating Systems: Outcrossing versus Selfing Spencer C. H. Barrett OUTLINE that transitions to predominant selfing have occurred on numerous occasions, although selfing lineages are often 1. Definitions and measurement short-lived because of the negative effects of selfing on 2. Variation in mating patterns the genome. 3. Evolution of self-fertilization 4. Mechanisms of selection 5. The problem of mixed mating 6. Evolutionary history GLOSSARY Floral Design and Display. The morphological features of Mating systems vary enormously among groups of or- flowers and inflorescences that influence pollen dis- ganisms. This has led to diverse definitions and ap- persal and mating patterns in flowering plants; floral proaches for investigating their evolution and main- design involves characteristics of individual flowers, tenance. Animal mating systems are characterized by including their size, structure, color, and the spatial different patterns of parental investment in offspring and temporal presentation of female (pistil) and male and variation in the extent to which sexual selection (stamens) sex organs, and floral display concerns shapes male and female traits (see chapter VII.4). A the number of open flowers on a plant and their ar- primary focus of most studies is determining the causes rangement within and among inflorescences. and consequences of variation in mate number for fe- Inbreeding Depression. The reduction in viability and/ males and males. In contrast, in hermaphrodite organ- or fertility of inbred offspring in comparison with isms, particularly plants, the emphasis is largely on de- outbred offspring.
    [Show full text]
  • Allardts Argument Versus Bakerts Contention for the Adaptive
    Allard’s argument versus Baker’s contention for the adaptive significance of selfing in a hermaphroditic fish John C. Avise1 and Andrey Tatarenkov Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by John C. Avise, October 2, 2012 (sent for review June 29, 2012) Fertilization assurance (Baker’s contention) and multilocus coadap- heterogeneity” and thus “natural selection was the predominant tation (Allard’s argument) are two distinct hypotheses for the integrating force in shaping the specific genetic structure of dif- adaptive significance of self-fertilization in hermaphroditic taxa, ferent local populations as well as the adaptive landscape.” With and both scenarios have been invoked to rationalize isogenicity regard to purported evolutionary benefits of self-fertilization as via incest in various plants and invertebrate animals with predom- a tactical component of a mixed-mating strategy, for shorthand we inant selfing. Here we contrast Allard’s argument and Baker’s con- will refer to this genomic-coadaptation scenario as Allard’s ar- tention as applied to the world’s only known vertebrate that gument for the adaptive significance of selfing. routinely self-fertilizes. We pay special attention to frequencies Soon thereafter, Robert Selander and colleagues published an of locally most common multilocus genotypes in Floridian popula- analogous series of studies documenting multilocus coadaptation tions of the Mangrove Rivulus (Kryptolebias marmoratus). Isoge- in local populations of terrestrial hermaphroditic snails with high nicity patterns in this fish appear inconsistent with Allard’s selfing rates (13–16). Again, specific multilocus suites of alleles argument, thus leaving Baker’s contention as the more plausible appeared to be coadapted to particular ecological conditions and scenario (a result also supported by natural history information for thereby often were driven to moderate or high frequencies in this species).
    [Show full text]
  • Convergent Recombination Cessation Between Mating-Type Genes and Centromeres in Selfing Anther-Smut Fungi
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Research Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi Fantin Carpentier,1,4 Ricardo C. Rodríguez de la Vega,1,4 Sara Branco,1,6 Alodie Snirc,1 Marco A. Coelho,2,7 Michael E. Hood,3,5 and Tatiana Giraud1,5 1Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France; 2UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; 3Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA The degree of selfing has major impacts on adaptability and is often controlled by molecular mechanisms determining mating compatibility. Changes in compatibility systems are therefore important evolutionary events, but their underlying genomic mechanisms are often poorly understood. Fungi display frequent shifts in compatibility systems, and their small genomes fa- cilitate elucidation of the mechanisms involved. In particular, linkage between the pre- and postmating compatibility loci has evolved repeatedly, increasing the odds of gamete compatibility under selfing. Here, we studied the mating-type chromo- somes of two anther-smut fungi with unlinked mating-type loci despite a self-fertilization mating system. Segregation analyses and comparisons of high-quality genome assemblies revealed that these two species displayed linkage between mating-type loci and their respective centromeres. This arrangement renders the same improved odds of gamete compatibility as direct linkage of the two mating-type loci under the automictic mating (intratetrad selfing) of anther-smut fungi.
    [Show full text]
  • Selfing and Outcrossing in a Parasitic Hermaphrodite Helminth (Trematoda, Echinostomatidae)
    Heredity 77 (1996 1—8 Received 7 April 1995 Selfing and outcrossing in a parasitic hermaphrodite helminth (Trematoda, Echinostomatidae) SANDRINE TROUVE, FRANOIS RENAUDtI PATRICK DURAND & JOSEPH JOURDANE* Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, Laboratoire de Biologie Animale, CNRS URA 698, Université de Perpignan, Avenue de Villeneuve, 66860 Perpignan Cedex and fLaboratoire de Parasitologie Comparée, CNRS URA 698, USTL Montpe/lier II, Place E. Batailon, 34095 Montpe/lier Cedex 05, France Echinostomesare simultaneous hermaphrodite trematodes, parasitizing the intestine of verte- brates. They are able to self- and cross-inseminate. Using electrophoretic markers specific for three geographical isolates (strains) of Echinostoma caproni, we studied the outcrossing rate from a 'progeny-array analysis' by comparing the mother genotype with those of its progeny. In a simultaneous infection of a single mouse with two individuals of two different strains, each individual exhibits an unrestricted mating pattern involving both self- and cross-fertilization. The association in mice of two adults of the same strain and one adult of another strain shows a marked mate preference between individuals of the same isolate. From mice coinfected with one parent of the three isolates, each parent was shown to be capable of giving and receiving sperm to and from at least two different partners. Mating system polymorphism in our parasitic model is thus discussed in the context of the theories usually advanced. Keywords:assortativemating,
    [Show full text]
  • When Is It Worth Being a Self-Compatible Hermaphrodite?
    When is it worth being a self-compatible hermaphrodite? Context-dependent effects of self-pollination on female advantage in gynodioecious Silene nutans Emna Lahiani, Pascal Touzet, Emmanuelle Billard, Mathilde Dufaÿ To cite this version: Emna Lahiani, Pascal Touzet, Emmanuelle Billard, Mathilde Dufaÿ. When is it worth being a self- compatible hermaphrodite? Context-dependent effects of self-pollination on female advantage in gyn- odioecious Silene nutans. Ecology and Evolution, Wiley Open Access, 2015, 5 (9), pp.1854-1862. 10.1002/ece3.1410. hal-01141623 HAL Id: hal-01141623 https://hal.archives-ouvertes.fr/hal-01141623 Submitted on 11 May 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. When is it worth being a self-compatible hermaphrodite? Context-dependent effects of self-pollination on female advantage in gynodioecious Silene nutans Emna Lahiani, Pascal Touzet, Emmanuelle Billard & Mathilde Dufay Unite Evolution Ecologie Paleontologie, UMR CNRS 8198, Universite de Lille 1 - Sciences et Technologies, Villeneuve d’Ascq, France Keywords Abstract Female advantage, gynodioecy, male sterility, pollen limitation, self-pollination, Silene In gynodioecious plant species with nuclear-cytoplasmic sex determination, nutans. females and hermaphrodites plants can coexist whenever female have higher seed fitness than hermaphrodites.
    [Show full text]
  • The Evolutionary Genetics of Plant Hybrid Incompatibilities Lila Fishman and Andrea L
    Contents 1. INTRODUCTION . 708 2. GENIC INCOMPATIBILITIES. 708 2.1. The Dobzhansky-Muller Model: An Epistatic Solution to the Puzzle of Unfit Hybrids. 708 2.2. Nuclear Genic Incompatibilities. 711 2.3. Cytonuclear Incompatibilities . 717 3. CHROMOSOMAL REARRANGEMENTS—THE ONCE AND FUTURE KINGS OF PLANT REPRODUCTIVE ISOLATION? . 722 3.1. Inversions: Common Suppression of Recombination Without Direct Fertility Costs? . 723 3.2. Crossing the Valley of Low Fitness to Speciation: The Enduring Mystery ofUnderdominantTranslocations............................................ 723 1. INTRODUCTION Hybrid incompatibilities, here defined as genic and structural interactions between divergent genomes resulting in the reduced fitness of interspecific or interpopulation hybrids, are a long- standing puzzle in evolutionary biology. How does bringing together two perfectly functional genetic programs in a hybrid somehow result in reproductive failure or death? Why, given natural selection as a major force in species divergence, do such deleterious incompatibilities evolve? When and where do hybrid incompatibilities act as barriers to gene flow during divergence and as direct contributors to speciation? While these questions transcend (eukaryotic) taxon, the answers de- pend in large part on the reproductive and developmental biology of a given organism. That is, how plant hybrids fall apart reflects how plants are put together. Thus, the study of plant hybrid incom- patibilities touches many fields in plant biology, from molecular biology to the ecology of species interactions. Our goal here is to summarize recent work on the full breadth of plant hybrid incom- patibilities from an evolutionary genetic perspective. This perspective necessarily includes both molecular mechanisms and potential speciation consequences (see the sidebar titled The Question of Consequences), but our primary focus is on recent progress toward understanding how and why incompatibilities evolve and on what they tell us about evolutionary processes within plant species.
    [Show full text]
  • Genetic Diversity and Fitness in Small Populations of Partially Asexual, Self
    Heredity (2010) 104, 482–492 & 2010 Macmillan Publishers Limited All rights reserved 0018-067X/10 $32.00 www.nature.com/hdy ORIGINAL ARTICLE Genetic diversity and fitness in small populations of partially asexual, self-incompatible plants M Navascue´s1,2, S Stoeckel3 and S Mariette4 1Unidad de Gene´tica, Centro de Investigacio´n Forestal, INIA, Carretera de La Corun˜a km 7.5, Madrid, Spain; 2E´ quipe E´ co-e´volution Mathe´matique, CNRS, UMR 7625 E´ cologie et E´ volution, Universite´ Pierre et Marie Curie & E´ cole Normale Supe´rieure, Paris, France; 3UMR Biology of Organisms and Populations applied to Plant Protection, INRA Agrocampus Rennes, Le Rheu, France and 4Unite´ de Recherche sur les Espe`ces Fruitie`res, INRA, Domaine de la Grande Ferrade, Villenave d’Ornon, France How self-incompatibility systems are maintained in plant S-locus. In addition, an excess of heterozygotes was present in populations is still a debated issue. Theoretical models predict the population, causing an increase in mutation load. This that self-incompatibility systems break down according to the heterozygote excess was enhanced by the self-incompatibility intensity of inbreeding depression and number of S-alleles. system in small populations. In addition, in highly asexual Other studies have explored the function of asexual reproduc- populations, individuals produced asexually had some fitness tion in the maintenance of self-incompatibility. However, the advantages over individuals produced sexually, because population genetics of partially asexual, self-incompatible sexual reproduction produces homozygotes of the deleterious populations are poorly understood and previous studies have allele, contrary to asexual reproduction. Our results suggest failed to consider all possible effects of asexual reproduction or that future research on the function of asexuality for the could only speculate on those effects.
    [Show full text]