Large-Scale Quantification of Vertebrate Biodiversity in Ailaoshan

Total Page:16

File Type:pdf, Size:1020Kb

Large-Scale Quantification of Vertebrate Biodiversity in Ailaoshan bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941336; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Large-scale Quantification of Vertebrate Biodiversity in 2 Ailaoshan Nature Reserve from Leech iDNA 1,* 2,*,** 1,2 3,4 3 Yinqiu Ji , Christopher CM Baker , Yuanheng Li , Viorel D Popescu , Zhengyang 2 1 5,6 1 7 7 4 Wang , Jiaxin Wang , Lin Wang , Chunying Wu , Chaolang Hua , Zhongxing Yang , Chunyan 1 8 7 2,** 1,9,10** 5 Yang , Charles CY Xu , Qingzhong Wen , Naomi E Pierce , and Douglas W Yu 1 6 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, 32 Jiaochang 7 Dong Lu, Kunming, Yunnan 650223 China 2 8 Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge 9 MA 02138 USA 3 10 Department of Biological Sciences and Sustainability Studies Theme, Ohio University, Athens OH 45701 11 USA 4 12 Center for Environmental Studies (CCMESI), University of Bucharest, Bucharest, Romania 5 13 Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of 14 Sciences, Mengla 666303, China 6 15 Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, 16 China 7 17 Yunnan Institute of Forest Inventory and Planning, 289 Renmin E Rd, Kunming Yunnan 650028 China 8 18 Redpath Museum and Department of Biology, McGill University, 859 Sherbrooke Street West, Montreal, 19 PQ H3A2K6 Canada 9 20 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 21 Yunnan, 650223 China 10 22 School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk 23 NR47TJ, UK * 24 These authors contributed equally to this work. ** 25 Corresponding authors. CCMB: [email protected]; NEP: [email protected]; 26 DWY: [email protected] 27 Keywords: environmental DNA, metabarcoding, occupancy, leeches, China, monitoring, 28 conservation, biodiversity 29 1 Abstract 30 Environmental DNA (eDNA) has great potential to complement visual surveys, camera 31 trapping, and bioacoustics in measuring biodiversity. We report here a large-scale attempt 32 to use DNA from leech-ingested bloodmeals to estimate vertebrate occupancy at the scale 2 33 of an entire protected area: the 677 km Ailaoshan national-level nature reserve in Yunnan 34 province, southwest China. We contracted 163 park rangers to collect leeches in 172 pa- 35 trol areas, resulting in 30,468 total leeches, divided over 893 replicate samples. Replicate 36 sampling from each patrol area was achieved by providing rangers with preservative-filled 37 tubes in separate, self-sealing bags, inducing them to distribute collected leeches over mul- 38 tiple bags, which we could sequence separately. We show that combining leech-derived 39 DNA data with Bayesian site-occupancy modeling can produce detailed and useful biodi- 40 versity inferences for a wide range of vertebrates in a reasonable timeframe. For example, in 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941336; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 41 Ailaoshan, sites at lower elevations and closer to the reserve edge have higher occupancy of 42 domestic species (cows, sheep, goats) compared to sites at higher elevations and closer to the 43 reserve interior. Muntjak deer show similar occupancy patterns to the domesticated species, 44 but otherwise, most species of large mammal wildlife (e.g. sambar, black bear, serow, tufted 45 deer) show the opposite pattern: greater occupancy at higher elevations and closer to the 46 reserve interior. We conclude that leech-derived eDNA can be used to efficiently measure 47 the effectiveness of protected areas in terms of vertebrate biodiversity outcomes and to help 48 us optimize the deployment of management resources within reserves, by providing valuable 49 information on the spatial distributions of vertebrate species and on the environmental and 50 anthropogenic correlates of those distributions. 51 ¯境DNA (eDNA) (生i多7'Ä0¹bw有极'的\力, 可以与现有的生i多7'监K 52 ¹法, 如目ÆGK法、¢外ø:监K法, 生i声f监K法Ib成互e. ,研v首!)(蚂 53 WeDNA(sÎ蚂W8食的@²-Ð取的DNA) ùM于-国西Wè云W省的哀bq国¶ê6 54 保¤:进L了一*h@的脊椎¨i多7'的Ä0. (,研v-, 677s¹l里的保¤:«划 55 分成172*á;:, 1163M¤林X(áÆÇ程-ÇÆ了;q30468ê蚂W, 这些蚂W9nÇÆ 56 7¹, ÇÆ时间ÊwSpÏ«合v成了893份7,. 我们将蚂WeDNApn和贝叶¯M¹`n 57 !型ø结合, 分析¨­得0(一定时间范围内哀bq脊椎¨i各iÍ的wS分布图1. 例如, 58 哀bqw拔较NÊ`近保¤:¹缘的0:, ø较于w拔较高Ê`近保¤:-Ã的0:, w有 59 更多的[, 羊I¶{¨i; (Î生iÍ-, d麂H现了与¶{¨i{<的分布趋¿, 而v它' 60 型ús¨i(如4鹿、黑熊、Ïè羚) 则øÍ, (w拔较高Ê`近保¤:-Ã的:域分布更 61 多. ,研v的结果>:ú于蚂W的eDNA技/可以Ð供s于脊椎¨iiÍ的z间分布以ʯ 62 境和º{;¨ù这些iÍ分布的qÍI有价<的áo, ©我们可以ndÄ0保¤:ù脊椎¨ 63 i多7'的保¤H率, Î而可以.©优化保¤:内¡理D源的èr. 64 2 Introduction 65 The difficulty of measuring the effectiveness of protected areas. In 2010, the signatories 66 of the Convention on Biological Diversity, including China, agreed to the 2011-2020 Aichi 67 Biodiversity Targets [6]. Aichi Target 11 concerns the safeguarding of biodiversity and sets 68 the goals of placing (A) 17% of terrestrial and inland water habitats in a system of nature 69 reserves that are (B) ecologically representative, (C) well-connected, (D) equitable, and 70 (E) effective. The world has nearly achieved goal A, with 15% of global land area now 2 71 under national jurisdiction [13, 71]. China has to date also placed 15% (1.43 million km ) 72 of its land surface into nature reserves [78, 9]. Moreover, Wu et al. [76] have shown that, 73 at least in western China, the reserve system covers most ecoregions, biodiversity priority 74 areas, and natural vegetation types (goal B), and Ren et al. [52] have used time-series 75 analyses of Landsat imagery to show that China's national-level nature reserves successfully 76 prevent deforestation (goal E). China has therefore already demonstrated some considerable 77 institutional capacity for achieving Aichi Target 11. 78 However, in southern and eastern China, the ecological representativeness of reserves is 79 low (goal B) [77], many reserves are isolated (goal C) [76], there is little information on 80 the impact of the reserves on local human populations (goal D) and, most importantly, 81 we know little about whether the reserves are effective at protecting the species that live 82 inside them (goal E). Our focus in this study is thus goal E, reserve effectiveness, because 83 if reserves cannot protect their existing biodiversity endowments, the other four goals do 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941336; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 84 not matter [34, 22, 71, 5, 13]. We further focus on vertebrates (mammals, birds, amphib- 85 ians, and reptiles), because one of the most important threats to vertebrate populations 86 in China is overexploitation [79], which is undetectable using remote sensing methods, and 87 thus especially difficult to measure. 88 Here, we ask if it is possible to design efficient, repeated, direct, granular, understandable, 89 and auditable metrics of vertebrate-biodiversity statuses. While indirect measures, such 90 as reports of staffing and budget levels [13] and expert-opinion surveys [34] can be used 91 to estimate the aggregate status of reserves at broad spatial scales, we also need regularly 92 updated (repeated) assessments of vertebrate populations themselves (direct and granular) 93 in order to structure management incentives (e.g. job promotions) and thereby to increase 94 and maintain management effectiveness. Moreover, it should be possible for these metrics 95 to be checked in a rigorous way and thus validated by neutral third parties such as courts 96 and the public (auditable and understandable), which is necessary for dispute resolution. 97 Finally, because management resources are limited, such metrics should be cost-effective 98 (efficient) [20, 80, 16]. 99 Emerging technologies for surveying vertebrate biodiversity at broad spatial scales. Ad- 100 vances in and increased availability of technologies such as camera traps, bioacoustics, and 101 environmental DNA (eDNA) allow for broad-scale biodiversity monitoring, via direct and 102 auditable vertebrate-biodiversity metrics that complement current Earth Observation tech- 103 nologies (e.g. satellite remote sensing of land-cover change) [10]. In particular, camera traps 104 (and increasingly, bioacoustics) have shown great promise in developing biodiversity indica- 105 tors that meet the requirements of the Convention for Biological Diversity for broad-scale 106 biodiversity monitoring [2, 5, 35, 49, 74, 24]. However, the costs of buying and deploying 107 camera traps and bioacoustic devices places limitations on the area that they can be used 108 to monitor. For example, Beaudrot et al. [5] recently reported that multi-year camera-trap 109 surveys of 511 populations of terrestrial mammals and birds in fifteen tropical-forest pro- 110 tected areas did not detect \systematic declines in biodiversity (i.e. occupancy, richness, or 2 111 evenness)." However, each of their camera-trap sets sampled between 140 to 320 km , which 112 is only 1-2% of the area of the largest parks in their dataset, the obvious reason being the 113 difficulty and expense of setting up a camera-trap network to cover large, difficult-to-access 114 areas, exacerbated by theft and vandalism in some contexts [46, 24].
Recommended publications
  • Diet Composition and Overlap in a Montane Frog Community in Vietnam
    Herpetological Conservation and Biology 13(1):205–215. Submitted: 5 November 2017; Accepted: 19 March 2018; Published 30 April 2018. DIET COMPOSITION AND OVERLAP IN A MONTANE FROG COMMUNITY IN VIETNAM DUONG THI THUY LE1,4, JODI J. L. ROWLEY2,3, DAO THI ANH TRAN1, THINH NGOC VO1, AND HUY DUC HOANG1 1Faculty of Biology and Biotechnology, University of Science, Vietnam National University-HCMC, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam 2Australian Museum Research Institute, Australian Museum,1 William Street, Sydney, New South Wales 2010, Australia 3Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia 4Corresponding author, e-mail: [email protected] Abstract.—Southeast Asia is home to a highly diverse and endemic amphibian fauna under great threat. A significant obstacle to amphibian conservation prioritization in the region is a lack of basic biological information, including the diets of amphibians. We used stomach flushing to obtain data on diet composition, feeding strategies, dietary niche breadth, and overlap of nine species from a montane forest in Langbian Plateau, southern Vietnam: Feihyla palpebralis (Vietnamese Bubble-nest Frog), Hylarana montivaga (Langbian Plateau Frog), Indosylvirana milleti (Dalat Frog), Kurixalus baliogaster (Belly-spotted Frog), Leptobrachium pullum (Vietnam Spadefoot Toad), Limnonectes poilani (Poilane’s Frog), Megophrys major (Anderson’s Spadefoot Toad), Polypedates cf. leucomystax (Common Tree Frog), and Raorchestes gryllus (Langbian bubble-nest Frog). To assess food selectivity of these species, we sampled available prey in their environment. We classified prey items into 31 taxonomic groups. Blattodea was the dominant prey taxon for K.
    [Show full text]
  • Variety of Antimicrobial Peptides in the Bombina Maxima Toad and Evidence of Their Rapid Diversification
    http://www.paper.edu.cn 1220 Wen-Hui Lee et al. Eur. J. Immunol. 2005. 35: 1220–1229 Variety of antimicrobial peptides in the Bombina maxima toad and evidence of their rapid diversification Wen-Hui Lee1, Yan Li2,3, Ren Lai1, Sha Li2,4, Yun Zhang1 and Wen Wang2 1 Department of Animal Toxinology, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming, P. R. China 2 CAS-Max Planck Junior Scientist Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming, P. R. China 3 Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China 4 Department of Pathology, University of Chicago, Chicago, USA Antimicrobial peptides secreted by the skin of many amphibians play an important role Received 30/8/04 in innate immunity. From two skin cDNA libraries of two individuals of the Chinese red Revised 4/2/05 belly toad (Bombina maxima), we identified 56 different antimicrobial peptide cDNA Accepted 14/2/05 sequences, each of which encodes a precursor peptide that can give rise to two kinds of [DOI 10.1002/eji.200425615] antimicrobial peptides, maximin and maximin H. Among these cDNA, we found that the mean number of nucleotide substitution per non-synonymous site in both the maximin and maximin H domains significantly exceed the mean number of nucleotide substitution per synonymous site, whereas the same pattern was not observed in other structural regions, such as the signal and propiece peptide regions, suggesting that these antimicrobial peptide genes have been experiencing rapid diversification driven by Darwinian selection.
    [Show full text]
  • Epidemiology of Snakebites from a General Hospital in Singapore: a 5-Year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS
    640 Epidemiology of Snakebites—Hock Heng Tan Original Article Epidemiology of Snakebites from A General Hospital in Singapore: A 5-year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS Abstract Introduction: This is a retrospective study on the epidemiology of snakebites that were presented to an emergency department (ED) between 2004 and 2008. Materials and Methods: Snakebite cases were identified from International Classification of Diseases (ICD) code E905 and E906, as well as cases referred for eye injury from snake spit and records of antivenom use. Results: Fifty-two cases were identified: 13 patients witnessed the snake biting or spitting at them, 22 patients had fang marks and/or clinical features of envenomations and a snake was seen and the remaining 17 patients did not see any snake but had fang marks suggestive of snakebite. Most of the patients were young (mean age 33) and male (83%). The three most commonly identified snakes were cobras (7), pythons (4) and vipers (3). One third of cases occurred during work. Half of the bites were on the upper limbs and about half were on the lower limbs. One patient was spat in the eye by a cobra. Most of the patients (83%) arrived at the ED within 4 hours of the bite. Pain and swelling were the most common presentations. There were no significant systemic effects reported. Two patients had infection and 5 patients had elevated creatine kinase (>600U/L). Two thirds of the patients were admitted. One patient received antivenom therapy and 5 patients had some form of surgical intervention, of which 2 had residual disability.
    [Show full text]
  • Present and Past Climatic Effects on the Current Distribution and Genetic
    Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Present and past climatic effects on the ARTICLE current distribution and genetic diversity of the Iberian spadefoot toad (Pelobates cultripes): an integrative approach Jorge Gutierrez-Rodrıguez1,A.Marcia Barbosa2 and Inigo~ Martınez-Solano3,4,* 1Museo Nacional de Ciencias Naturales, ABSTRACT CSIC, 28006 Madrid, Spain, 2Centro de Aim Predicting species responses to global change is one of the most pressing Investigacß~ao em Biodiversidade e Recursos issues in conservation biogeography. A key part of the problem is understand- Geneticos (CIBIO/InBIO) – Universidade de Evora, 7004-516 Evora, Portugal, 3CIBIO/ ing how organisms have reacted to climatic changes in the past. Here, we use InBIO, Centro de Investigacß~ao em species distribution modelling to infer the effects of climate changes since the bp Biodiversidade e Recursos Geneticos, Last Interglacial (LIG, c. 130,000 yr ) on patterns of genetic structure and Universidade do Porto, 4485-661 Vair~ao, diversity in the western spadefoot toad (Pelobates cultripes) in combination Portugal, 4Instituto de Investigacio´nen with spatially explicit phylogeographical analyses. Recursos Cinegeticos (CSIC-UCLM-JCCM), Location Iberian Peninsula and mainland France. Ronda de Toledo, s/n, 13071 Ciudad Real, Spain Methods Five hundred and twenty-four individuals from 54 populations across the species range were sampled to document patterns of genetic diversity and infer their evolutionary history based on data from mtDNA and 14 poly- morphic microsatellites. Generalized linear models based on distribution data were used to infer climatic favourability for the species in the present and in palaeoclimatic simulations for the LIG, the mid-Holocene and the Last Glacial Maximum (LGM).
    [Show full text]
  • Title a New Tree Frog of the Genus Kurixalus (Anura: Rhacophoridae)
    A New Tree Frog of the Genus Kurixalus (Anura: Title Rhacophoridae) from Vietnam Author(s) Nguyen, Tao Thien; Matsui, Masafumi; Duc, Hoang Minh Citation Current Herpetology (2014), 33(2): 101-111 Issue Date 2014-08 URL http://hdl.handle.net/2433/216854 Right © 2014 by The Herpetological Society of Japan Type Journal Article Textversion publisher Kyoto University Current Herpetology 33(2): 101–111, August 2014 doi 10.5358/hsj.33.101 © 2014 by The Herpetological Society of Japan A New Tree Frog of the Genus Kurixalus (Anura: Rhacophoridae) from Vietnam TƵDŽ Tƾƿƻǃ NGUYEN1*, MƵLjƵƼNJǑƿ MATSUI2, Ƶǃƺ HDŽƵǃƽ Mƿǃƾ DUC3 1Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM 2Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606–8501, JAPAN 3Southern Institute of Ecology, Vietnam Academy of Science and Technology, 01 Mach Dinh Chi, Ben Nghe, Ho Chi Minh, VIETNAM Abstract: A small rhacophorid frog from southern Vietnam is placed in the genus Kurixalus through molecular phylogenetic analysis. Because it is divergent genetically and morphologically from all known congeners, we describe it as a distinct species, K. viridescens. The species di÷ers from the other congeners by an immaculate green dorsum, which is usually maculated gray to brown in the other species. With the addition of this new species, Vietnam now encompasses seven species of Kurixalus, and can be regarded as the center of speciation of this genus. Key words: Kurixalus viridescens sp. nov.; MtDNA phylogeny; New species; Taxonomy; Vietnam IǃljLJDŽƺNJƹljƿDŽǃ At present, about 10 species are assigned to the genus Kurixalus (Yu et al., 2013), but A rhacophorid frog genus Kurixalus Ye, there still remain several unnamed species Fei, and Dubois In Fei, 1999 occurs in Asia from little-explored regions.
    [Show full text]
  • New Records of Snakes (Squamata: Serpentes) from Hoa Binh Province, Northwestern Vietnam
    Bonn zoological Bulletin 67 (1): 15–24 May 2018 New records of snakes (Squamata: Serpentes) from Hoa Binh Province, northwestern Vietnam Truong Quang Nguyen1,2,*, Tan Van Nguyen 1,3, Cuong The Pham1,2, An Vinh Ong4 & Thomas Ziegler5 1 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 2 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 3 Save Vietnam’s Wildlife, Cuc Phuong National Park, Ninh Binh Province, Vietnam 4 Vinh University, 182 Le Duan Road, Vinh City, Nghe An Province, Vietnam 5 AG Zoologischer Garten Köln, Riehler Strasse 173, D-50735 Cologne, Germany * Corresponding author. E-mail: [email protected] Abstract. We report nine new records of snakes from Hoa Binh Province based on a reptile collection from Thuong Tien, Hang Kia-Pa Co, Ngoc Son-Ngo Luong nature reserves, and Tan Lac District, comprising six species of Colubri- dae (Dryocalamus davisonii, Euprepiophis mandarinus, Lycodon futsingensis, L. meridionalis, Sibynophis collaris and Sinonatrix aequifasciata), one species of Pareatidae (Pareas hamptoni) and two species of Viperidae (Protobothrops mu- crosquamatus and Trimeresurus gumprechti). In addition, we provide an updated list of 43 snake species from Hoa Binh Province. The snake fauna of Hoa Binh contains some species of conservation concern with seven species listed in the Governmental Decree No. 32/2006/ND-CP (2006), nine species listed in the Vietnam Red Data Book (2007), and three species listed in the IUCN Red List (2018). Key words. New records, snakes, taxonomy, Hoa Binh Province.
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Toxicon 60 (2012) 967–981 Contents lists available at SciVerse ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Antimicrobial peptides and alytesin are co-secreted from the venom of the Midwife toad, Alytes maurus (Alytidae, Anura): Implications for the evolution of frog skin defensive secretions Enrico König a,*, Mei Zhou b, Lei Wang b, Tianbao Chen b, Olaf R.P. Bininda-Emonds a, Chris Shaw b a AG Systematik und Evolutionsbiologie, IBU – Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany b Natural Drug Discovery Group, School of Pharmacy, Medical Biology Center, Queen’s University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK article info abstract Article history: The skin secretions of frogs and toads (Anura) have long been a known source of a vast Received 23 March 2012 abundance of bioactive substances.
    [Show full text]
  • High Throughput Screening and Identification of Coagulopathic Snake Venom Proteins and 2 Peptides Using Nanofractionation and Proteomics Approaches
    bioRxiv preprint doi: https://doi.org/10.1101/780155; this version posted September 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Classified Personnel Information 1 High throughput screening and identification of coagulopathic snake venom proteins and 2 peptides using nanofractionation and proteomics approaches 3 4 Julien Slagbooma,b, Marija Mladićc, Chunfang Xie b, Freek Vonkd, Govert W. Somsenb, Nicholas 5 R. Casewella, Jeroen Koolb 6 aCentre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, 7 Liverpool, UK 8 bDivision of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, 9 VU University Amsterdam, Amsterdam, The Netherlands 10 cAnimal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The 11 Netherlands 12 dNaturalis Biodiversity Center, Leiden, The Netherlands 13 *Corresponding author [email protected] 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/780155; this version posted September 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Classified Personnel Information 16 Abstract 17 Snakebite is a neglected tropical disease that results in a variety of systemic and local pathologies in 18 envenomed victims and is responsible for around 138,000 deaths every year. Many snake venoms cause 19 severe coagulopathy that makes victims vulnerable to suffering life-threating haemorrhage.
    [Show full text]
  • Breeding of Rhacophorus (Polypedates) Feae
    The first breeding of Fea's Treefrog - Rhacophorus feae at the Leningrad Zoo with account of the species. by Anna A. Bagaturova, Mikhail F. Bagaturov (corresponding author, email: [email protected]), “Department of Insectarium and Amphibians”, Leningrad zoo, St. Petersburg, Russia Abstract. The success of first captive breeding of the giant species of rhacophorid arboreal frog Rhacophorus feae in amphibian facility in Leningrad Zoo (Saint-Petersburg, Russia) has been described. Their natural history data, conservation status, threads, natural predators, morphology including size discussion, prophylactic and medication treatment; issues of adopting of wild adult specimens, keeping and captive breeding in zoo’s amphibian facility were described; features of breeding behavior stimulation, foam nest construction, rising of tadpoles and young frogs of other rhacophorids in comparison with hylid treefrogs’ species were discussed. Keywords. Rhacophoridae: Polypedates, Rhacophorus maximus, R. dennysi, R. annamensis, R. orlovi, Kurixalus odontotarsus, R. feae: natural history, conservation status, threads, description, thread pose, Vietnam, Thailand; captive management, adaptation, breeding, nest, tadpoles, froglets, veterinary; feeding, proper housing, Hylidae, captive management, raising; Leningrad Zoo. Genus Rhacophorus H. Kuhl and J.C. van Hasselt, 1822 comprised for over 80 species (Frost, 2011, with later additions). Every year new species of rhacophorid frogs described from the territories of Vietnam, China, Cambodia and other countries of southeastern Asia for last decades (Inger et al, 1999 a, b.; Orlov et al, 2004, 2005 etc, see: References section for others). Some species of Rhacophorus also referred to as Polypedates, Aquixalus and Kurixalus according to different authors (Orlov and Ho, 2005, Fei et al, 2005, Yu et al, 2009, Frost, 2011, etc).
    [Show full text]
  • Cfreptiles & Amphibians
    HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL15, & N AMPHIBIANSO 4 • DEC 2008 •189 28(1):34–36 • APR 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS NotesFEATURE ARTICLES on Behavior in Green Keelbacks, . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: RhabdophisOn the Road to Understanding the Ecologyplumbicolor and Conservation of the Midwest’s Giant(Cantor Serpent ...................... Joshua 1839) M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: A (Reptilia:Hypothetical Excursion ............................................................................................................................ Squamata: Natricidae)Robert W. Henderson 198 RESEARCH ARTICLES Rahul. The V.Texas Deshmukh Horned Lizard1, inSagar Central A. and Deshmukh Western Texas2 ......................., Swapnil A. Emily Badhekar Henry, Jason3, Brewer,Shubham Krista Mougey,Katgube and 4,Gad Atul Perry Bhelkar 204 5 . The Knight Anole (Anolis equestris) in Florida 1 H. N. 26, ............................................. Teacher Colony, Kalmeshwar,Brian J. Camposano,Nagpur, Maharashtra-441501, Kenneth L. Krysko, Kevin India M. Enge, ([email protected] Ellen M. Donlan, and Michael [corresponding Granatosky 212 author]) 2Behind Potdar Nursing Home, Kalmeshwar, Nagpur, Maharashtra-441501, India ([email protected]) CONSERVATION3Tiwaskarwadi, ALERT Raipur, Hingana, Nagpur, Maharashtra-441110, India ([email protected])
    [Show full text]
  • ID468 Evolution of a Special Organ, Nuchal Gland, Based on a Molecular
    ID468 Evolution of a special organ, nuchal gland, based on a molecular phylogeny of the Eurasian natricine snakes (Serpentes: Colubridae) Hirohiko Takeuchi1*, Akira Mori1, Li Ding2, Anslem de Silva3, Indraneil Das4, Tao Thien Nguyen5, Tein-Shun Tsai6, Teppei Jono7, Guang-xiang Zhu8, Dalshani Mahaulpatha9, Ye-zhong Tang2, Alan H. Savitzky10 1. Kyoto University, Japan 2. Chengdu Institute of Biology, Chinese Academy of Sciences, China 3. Gampola 4. University of Malaysia, Sarawak, Malaysia 5. Vietnam National Museum of Nature, Vietnam 6. National Pingtung University of Science and Technology, Taiwan, China 7. University of Ryukyus, Japan 8. Sichuan Agricultural University, China 9. University of Sri Jayawardenepura, Sri Lanka 10. Utah State University, USA ’Presenting author’s e-mail: [email protected] An Asian natricine snake, Rhabdophis tigrinus, has a unique series of organs, called nuchal glands, which contain cardiac steroidal toxins known as Bufadienolides. Rhabdophis tigrinus sequesters Bufadienolides from its toad prey and stores them in the nuchal glands as a defensive suBstance. Among more than 3400 species of snakes, only 18 Asian natricine species are known to have the nuchal glands. These 18 species Belong to three genera, Balanophis, Macropisthodon, and Rhabdophis. In Macropisthodon and Rhabdophis, however, species without the nuchal glands also exist. This evidence suggests multiple independent origin and/or secondarily loss of the nuchal glands. To infer the evolutionary history of the nuchal glands, we investigated the molecular phylogenetic relationships among Eurasian natricine species with and without the nuchal glands, Based on variations in partial sequences of the oocyte maturation factor Mos (c-mos) gene, the recomBination-activating gene 1 (Rag 1), and the mitochondrial cytochrome B (cyt.B) gene (total 2.6 kBp).
    [Show full text]