How Big Were Prehistoric Animals?

Total Page:16

File Type:pdf, Size:1020Kb

How Big Were Prehistoric Animals? NOMS Article of the Week #8 How Big Were Prehistoric Animals? Instructions: COMPLETE ALL QUESTIONS AND MARGIN NOTES using the CLOSE reading strategies practiced in class. This requires reading of the article three times. Step 1: Skim the article using these symbols as you read: (+) agree, (-) disagree, (*) important, (!) surprising, (?) wondering Step 2: Number the paragraphs. Read the article carefully and make notes in the margin. Step 3: A final quick read noting anything you may have missed during the first two reads. Your margin notes are part of your score for this assessment. Answer the questions carefully in complete sentences unless otherwise instructed. Student ____________________________ Period__________________Due 10/16/2014 Notes on my thoughts, How Big Were Prehistoric Animals? reactions and questions as I The size of prehistoric animals can be difficult to comprehend: 50 tons here, 50 read: feet there, and pretty soon you're talking about a creature that's as much bigger than an elephant as an elephant is bigger than a house cat. In this picture gallery, you can see how some of the most famous extinct animals that ever lived would have sized up against an average human being--which will give you a good idea what "big" really means! The largest dinosaur for which we have compelling fossil evidence, Argentinosaurus , measured over 100 feet from head to tail and may have weighed in excess of 100 tons. Even still, it's possible that this South American titanosaur was preyed upon by packs of the contemporary theropod Giganotosaurus . Less well known than the equally giant Quetzalcoatlus, Hatzegopteryx made its home on Hatzeg Island, which was isolated from the rest of central Europe during the late Cretaceous period. Not only was Hatzegopteryx's skull ten feet long, but this pterosaur may have had a wingspan of a whopping 40 feet (though it probably only weighed a few hundred pounds, since a heavier build would have made it less aerodynamic). Dinosaurs weren't the only reptiles that grew to enormous sizes during the Mesozoic Era. There were also gigantic crocodiles, notably the North American Deinosuchus, which measured over 30 feet from head to tail and weighed as much as ten tons. As intimidating as it was, though, Deinosuchus would have been no match for the slightly earlier Sarcosuchus, aka the SuperCroc; this African crocodile tipped the scales at a whopping 15 tons! Strauss,B. How big were prehistoric animals? About Education. October 7, 2014. NOMS Article of the Week #8 How Big Were Prehistoric Animals? The biggest terrestrial mammal that ever lived, Indricotherium (also known as Paraceratherium) measured about 40 feet from head to tail and weighed in the Notes on my thoughts, reactions and questions as I vicinity of 15 to 20 tons--which put this Oligocene ungulate in the same weight read: class as the titanosaur dinosaurs that vanished off the face of the earth 50 million years before. This giant plant-eater probably had a prehensile lower lip, with which it ripped the leaves off the high branches of trees. Granted, you probably already have a sense of how big Brachiosaurus was from repeated viewings of Jurassic Park. But what you may not have realized is how tall this sauropod was: because its front legs were significantly longer than its back legs, Brachiosaurus could attain the height of a five-story office building when it reared its neck up to its full height (a speculative posture which is still a subject of debate among paleontologists). There's not much to say about Megalodon that hasn't all been said before: this was fins-down the biggest prehistoric shark that ever lived, measuring anywhere from 50 to 70 feet long and weighing as much as 100 tons. The only ocean dweller that matched Megalodon's heft was the prehistoric whale Leviathan, which briefly shared this shark's habitat during the Miocene epoch. Compared to some of the other animals on this list, the Woolly Mammoth was nothing to write home about--this megafauna mammal measured about 13 feet long and weighed five tons soaking wet, making it only slightly bigger than the biggest modern elephants. However, you have to put Mammuthus primigenius in the proper Pleistocene context, where this prehistoric pachyderm was both hunted and worshiped as a demigod by the earliest humans. Tyrannosaurus Rex gets all the press, but the fact is that Spinosaurus was the more impressive dinosaur--not only in terms of its size (50 feet long and eight or nine tons, compared to 40 feet and six or seven tons for T. Rex) but also its appearance (that sail was a pretty cool accessory). It's possible that Spinosaurus occasionally grappled with the huge prehistoric crocodile Sarcosuchus. The prehistoric snake Titanoboa made up for its relative lack of heft (it only weighed about a ton) with its impressive length--fully grown adults stretched 50 feet from head to tail. This Paleocene snake shared its South American habitat with equally huge crocodiles and turtles, including the one-ton Carbonemys, with which it may occasionally have grappled. It sounds like the punchline to a prehistoric joke--a 20-foot-long, three-ton sloth in the same weight class as the Woolly Mammoth. But the fact is that herds of Megatherium were thick on the ground in Pliocene and Pleistocene South America, rearing up on their stocky hind legs to rip the leaves off trees (and fortunately leaving the other mammalian megafauna to themselves, since sloths are confirmed vegetarians). Strauss,B. How big were prehistoric animals? About Education. October 7, 2014. NOMS Article of the Week #8 How Big Were Prehistoric Animals? Comprehension questions – answers may be in phrases. 1. What does the author mean when stating that some dinosaurs are “famous”? 2. What did Megatherium eat, according to scientists? 3. Define comprehend as used in the article. 4. What movie was used as a means of comparison in the text? 5. Define heft as used in the text. 2. Answer each question in one or more complete sentences. To what is the author referring when stating, “Tyrannosaurus Rex gets all the press.”? 7/8.RI.1,2,3,4,5 How did Argentinosaurus likely earn its name? Of the What is the main idea of this article? Strauss,B. How big were prehistoric animals? About Education. October 7, 2014. NOMS Article of the Week #8 How Big Were Prehistoric Animals? 3. Using the descriptions in the text, label each of the “creatures”. ( 4. Open -ended response: Which of the dinosaurs mentioned would you least want to encounter? Be sure to answer the question in a complete sentence and include textual evidence to prove your reasoning. Answer this in OER format. Annotations :______/20 Questions: ______/80 Grade:_______ + Extra Credit_____ = Strauss,B. How big were prehistoric animals? About Education. October 7, 2014. .
Recommended publications
  • Megafauna Extinction, Tree Species Range Reduction, and Carbon Storage in Amazonian Forests
    Ecography 39: 194–203, 2016 doi: 10.1111/ecog.01587 © 2015 The Authors. Ecography © 2015 Nordic Society Oikos Subject Editor: Yadvinder Mahli. Editor-in-Chief: Nathan J. Sanders. Accepted 27 September 2015 Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests Christopher E. Doughty, Adam Wolf, Naia Morueta-Holme, Peter M. Jørgensen, Brody Sandel, Cyrille Violle, Brad Boyle, Nathan J. B. Kraft, Robert K. Peet, Brian J. Enquist, Jens-Christian Svenning, Stephen Blake and Mauro Galetti C. E. Doughty ([email protected]), Environmental Change Inst., School of Geography and the Environment, Univ. of Oxford, South Parks Road, Oxford, OX1 3QY, UK. – A. Wolf, Dept of Ecology and Evolutionary Biology, Princeton Univ., Princeton, NJ 08544, USA. – N. Morueta-Holme, Dept of Integrative Biology, Univ. of California – Berkeley, CA 94720, USA. – B. Sandel, J.-C. Svenning and NM-H, Section for Ecoinformatics and Biodiversity, Dept of Bioscience, Aarhus Univ., Ny Munkegade 114, DK-8000 Aarhus C, Denmark. – P. M. Jørgensen, Missouri Botanical Garden, PO Box 299, St Louis, MO 63166-0299, USA. – C. Violle, CEFE UMR 5175, CNRS – Univ. de Montpellier – Univ. Paul-Valéry Montpellier – EPHE – 1919 route de Mende, FR-34293 Montpellier Cedex 5, France. – B. Boyle and B. J. Enquist, Dept of Ecology and Evolutionary Biology, Univ. of Arizona, Tucson, AZ 85721, USA. – N. J. B. Kraft, Dept of Biology, Univ. of Maryland, College Park, MD 20742, USA. BJE also at: The Santa Fe inst., 1399 Hyde Park Road, Santa Fe, NM 87501, USA. – R. K. Peet, Dept of Biology, Univ. of North Carolina, Chapel Hill, NC 27599-3280, USA.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • The Asymmetry in the Great American Biotic Interchange in Mammals Is Consistent with Differential Susceptibility to Mammalian Predation
    Coversheet This is the accepted manuscript (post-print version) of the article. Contentwise, the accepted manuscript version is identical to the final published version, but there may be differences in typography and layout. How to cite this publication Please cite the final published version: Faurby, S. and Svenning, J.-C. (2016), The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation. Global Ecol. Biogeogr., 25: 1443–1453. doi:10.1111/geb.12504 Publication metadata Title: The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation Author(s): Faurby, S. and Svenning, J.-C. Journal: Global Ecology and Biogeography DOI/Link: https://doi.org/10.1111/geb.12504 Document version: Accepted manuscript (post-print) This is the peer reviewed version of the following article: [Faurby, S. and Svenning, J.-C. (2016), The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation. Global Ecol. Biogeogr., 25: 1443–1453. doi:10.1111/geb.12504], which has been published in final form at [https://doi.org/10.1111/geb.12504]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. General Rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Meet the Gilded Lady 2 Mummies Now Open
    Member Magazine Spring 2017 Vol. 42 No. 2 Mummies meet the gilded lady 2 mummies now open Seeing Inside Today, computerized inside of mummies, revealing CT scans of the Gilded Lady tomography (CT) scanning details about the person’s reveal that she was probably offers researchers glimpses age, appearance, and health. in her forties. They also suggest of mummified individuals “Scans like these are noninvasive, that she may have suffered like never before. By combining they’re repeatable, and they from tuberculosis, a common thousands of cross-sectioned can be done without damaging disease at the time. x-ray images, CT scans let the history that we’re trying researchers examine the to understand,” Thomas says. Mummy #30007, known as the Gilded Lady, is one of the most beautifully preserved mummies from The Field Museum’s collection, and one of 19 now on view in the special exhibition Mummies. For decades, keeping mummies like this one well preserved also meant severely limiting the ability of researchers to study them. The result is that little was known about the Gilded Lady beyond what could be gleaned from the mummy’s exterior, with its intricate linen bindings, gilded headdress, and painted facial features. Exterior details do offer some clues. The mummy dates from 30 BC–AD 395, a period when Egypt was a province of the Roman Empire. While the practice of mummification endured in Egypt, it was being transformed by Roman influences. Before the Roman era, for example, mummies had been placed in wooden coffins, while the Gilded Lady is preserved in only linen wrappings and cartonnage, a papier mâché-like material.
    [Show full text]
  • Oligocene and Early Miocene Mammal Biostratigraphy of the Valley of Lakes in Mongolia
    Palaeobio Palaeoenv (2017) 97:219–231 DOI 10.1007/s12549-016-0264-x ORIGINAL PAPER Oligocene and early Miocene mammal biostratigraphy of the Valley of Lakes in Mongolia Mathias Harzhauser1 & Gudrun Daxner-Höck1 & Margarita A. Erbajeva2 & Paloma López-Guerrero1,3 & Olivier Maridet4,5 & Adriana Oliver 1,6 & Werner E. Piller7 & Ursula B. Göhlich1 & Reinhard Ziegler8 Received: 13 July 2016 /Revised: 28 October 2016 /Accepted: 10 November 2016 /Published online: 15 December 2016 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The Taatsiin Gol Basin in Mongolia is a key area for data. Therefore, we test and evaluate the informal biozonation understanding the evolution and dispersal of Central Asian scheme that has been traditionally used for biostratigraphic mammal faunas during the Oligocene and early Miocene. correlations within the basin. Based on the analysis of the huge After two decades of intense fieldwork, the area is extraordi- dataset, a formalised biostratigraphic scheme is proposed. It narily well sampled and taxonomically well studied, yielding a comprises the Cricetops dormitor Taxon Range Zone large dataset of 19,042 specimens from 60 samples. The spec- (Rupelian), subdivided into the Allosminthus khandae Taxon imens represent 176 species-level and 99 genus-level taxa com- Range Subzone and the Huangomys frequens Abundance prising 135 small mammal species and 47 large mammals. A Subzone, the Amphechinus taatsiingolensis Abundance Zone detailed lithostratigraphy and new magnetostratigraphic and (early Chattian), the Amphechinus major Taxon Range Zone radiometric datings provide an excellent frame for these biotic (late Chattian), subdivided into the Yindirtemys deflexus This article is a contribution to the special issue BThe Valley of Lakes in Mongolia, a key area of Cenozoic mammal evolution and stratigraphy^.
    [Show full text]
  • Variable Impact of Late-Quaternary Megafaunal Extinction in Causing
    Variable impact of late-Quaternary megafaunal SPECIAL FEATURE extinction in causing ecological state shifts in North and South America Anthony D. Barnoskya,b,c,1, Emily L. Lindseya,b, Natalia A. Villavicencioa,b, Enrique Bostelmannd,2, Elizabeth A. Hadlye, James Wanketf, and Charles R. Marshalla,b aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bMuseum of Paleontology, University of California, Berkeley, CA 94720; cMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; dRed Paleontológica U-Chile, Laboratoria de Ontogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile; eDepartment of Biology, Stanford University, Stanford, CA 94305; and fDepartment of Geography, California State University, Sacramento, CA 95819 Edited by John W. Terborgh, Duke University, Durham, NC, and approved August 5, 2015 (received for review March 16, 2015) Loss of megafauna, an aspect of defaunation, can precipitate many megafauna loss, and if so, what does this loss imply for the future ecological changes over short time scales. We examine whether of ecosystems at risk for losing their megafauna today? megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We Approach compare ecological impacts of late-Quaternary megafauna extinction The late-Quaternary impact of losing 70–80% of the megafauna in five American regions: southwestern Patagonia, the Pampas, genera in the Americas (19) would be expected to trigger biotic northeastern United States, northwestern United States, and Berin- transitions that would be recognizable in the fossil record in at gia. We find that major ecological state shifts were consistent with least two respects.
    [Show full text]
  • Ancient Crocodile Relative Likely Food Source for Titanoboa 2 February 2010, by Bill Kanapaux
    Ancient crocodile relative likely food source for Titanoboa 2 February 2010, by Bill Kanapaux "We're starting to flesh out the fauna that we have from there," said lead author Alex Hastings, a graduate student at the Florida Museum and UF's department of geological sciences. Specimens used in the study show the new species, named Cerrejonisuchus improcerus, grew only 6 to 7 feet long, making it easy prey for Titanoboa. Its scientific name means small crocodile from Cerrejon. The findings follow another study by researchers at UF and the Smithsonian providing the first reliable evidence of what Neotropical rainforests looked like 60 million years ago. While Cerrejonisuchus is not directly related to On Feb. 1, 2010, Alex Hastings, a graduate student at modern crocodiles, it played an important role in UF’s Florida Museum of Natural History, measures a the early evolution of South American rainforest jaw fragment from an ancient crocodile that lived 60 ecosystems, said Jonathan Bloch, a Florida million years ago. The fossil came from the same site in Museum vertebrate paleontologist and associate Colombia as fossils of Titanoboa, indicating the crocodile curator. was a likely food source for the giant snake. "Clearly this new fossil would have been part of the food-chain, both as predator and prey," said Bloch, who co-led the fossil-hunting expeditions to (PhysOrg.com) -- A 60-million-year-old relative of Cerrejon with Smithsonian paleobotanist Carlos crocodiles described this week by University of Jaramillo. "Giant snakes today are known to eat Florida researchers in the Journal of Vertebrate crocodylians, and it is not much of a reach to say Paleontology was likely a food source for Cerrejonisuchus would have been a frequent meal Titanoboa, the largest snake the world has ever for Titanoboa.
    [Show full text]
  • Megafauna Extinction
    Episode 15 Teacher Resource 2nd June 2020 Megafauna Extinction 1. Before watching the BTN story, record what you know about Students will learn more about Australian megafauna and megafauna. investigate why they became 2. What is megafauna? extinct. 3. About how many years ago did megafauna exist in Australia? a. 4,000 b. 40,000 c. 400,000 Science – Year 6 The growth and survival of living 4. Complete the following sentence. A Diprotodon was a giant things are affected by physical _________________. conditions of their environment. 5. What did palaeontologist Dr Scott Hocknull and his team discover? Science – Year 7 6. Where did they make the discovery? Scientific knowledge has changed peoples’ understanding of the 7. What did they use to create images of what the megafauna might world and is refined as new have looked like? evidence becomes available. 8. Give some examples of the megafauna species they discovered. Interactions between organisms, 9. What might have caused megafauna to become extinct? including the effects of human 10. What did you learn watching the BTN story? activities can be represented by food chains and food webs. What do you know about megafauna? As a class discuss the BTN Megafauna Extinction story and ask students to record what they learnt watching the story. Record any questions they have. Here are some questions they can use to help guide their discussion. • What does the term megafauna mean? • When did megafauna exist? • How do we know they existed? • Why did megafauna grow so big? • What might have caused Australia’s megafauna to die out? Glossary Students will brainstorm a list of key words and terms that relate to the BTN Megafauna Extinction story.
    [Show full text]
  • Paraceratherium 在新疆准噶尔盆地北缘的发现及其意义1)
    第 41 卷 第 3 期 古 脊 椎 动 物 学 报 pp. 220~229 2003 年 7 月 VERTEBRATA PALASIATICA figs. 1~3 Paraceratherium 在新疆准噶尔盆地 北缘的发现及其意义1) 叶 捷1 孟 津2 吴文裕1 (1 中国科学院古脊椎动物与古人类研究所 北京 100044) (2 美国自然历史博物馆 纽约 10024) 关键词 新疆准噶尔盆地 ,晚渐新世 ,副巨犀 中图法分类号 Q915. 877 2000 年 ,笔者在位于新疆准噶尔盆地北缘的福海县哈拉玛盖乡以南的萨尔多依腊地 区测制乌伦古河组地层剖面时 ,在乌伦古河组和索索泉组之间的一套粗碎屑岩层中发现 了一些哺乳动物化石。其中有孟津在 20004 化石点 (46°35. 779′N ,87°43. 818′E) 发现的一 具副巨犀下颌骨。该下颌保存了这类动物的一些重要特征 ,这些特征对于解决长期以来 人们对于巨犀分类的有关争论以及含化石地层的时代提供了重要信息。 新疆萨尔多依腊的巨犀下颌支和牙齿的形态与 Forster2Cooper (1911 :p. 713 ; 1924 : Fig. 7) 描述的 Bugti 的 Paraceratherium bugtiense 标本在以下几个方面很相似 :1) 下颌水平 支底缘在颊齿列部位向下弯凸 ,其最大深度位于 m1、m2 之间 ;2) 联合部在 p2 前下弯 ;3) p2 之前的联合部上表面呈槽形 ,两侧形成锐脊 ;4) 仅有第一对下门齿 (i1) ,第二、三对门 齿已退化消失 ,该齿呈较长的圆锥形 ,伸向下前方 ,左右门齿基部相靠 ,顶端分离 ,其上无 使用磨蚀痕迹 ,齿根很粗壮 ;5) p2 的形态及 p2 没有被磨蚀的迹象。Forster2Cooper 指出 (1924 ,p. 369) ,他建立的 Paraceratherium 属的很特殊的特征是“a pair of downwardly turned tusks”。换句话说 ,是它具有 1) 下弯的下颌联合部和 2) 较长且呈锥形的第一下门齿。新 疆萨尔多依腊的巨犀在这方面无疑与 Paraceratherium 属是一致的。但它较属型种 P. bugtiense 尺寸大、下颌水平支的相对深度大 ,且 p2 之前的联合部更下弯和背面的凹槽更 深。 自 Forster2Cooper (1911) 创建副巨犀属 ( Paraceratherium) 以来 ,该属的含义多次发生变 化。其原因是 ,在 Bugti 地点发现的巨犀类化石的个体大小相差较大。最初 ,Forster2Cooper 将其中一块尺寸较小、保存较好的下颌作为正型标本记述 ,同时将一块残破的下颌联合 部、一些椎体和肢骨暂时归入了该种。但他指出归入该种的残破的下颌联合部、寰椎和肢 骨相对于正型标本尺寸要大得多 ,可能为雄性个体 ,正型标本则为雌性个体。后来 , Forster2Cooper (1923) 又为大尺寸的寰椎和肢骨建立了新属新种 Baluchitherium osborni ,并认 为该种与 Borissiak 所建立的 Indricotherium turgaicum 的肢骨十分相近 (Forster2Cooper , 1923 : p. 35) 。 1) 国家自然科学基金项目(编号 : 40172010 ,49928201) 资助。 收稿日期 :2003 - 02 - 10 3 期 叶 捷等 : Paraceratherium 在新疆准噶尔盆地北缘的发现及其意义 122 Granger 和 Gregory(1936) 在记述内蒙古发现的 Baluchitherium 时认为
    [Show full text]
  • SUPPLEMENTARY INFORMATION: Tables, Figures and References
    Samuels, Regnault & Hutchinson, PeerJ Evolution of the patellar sesamoid bone in mammals SUPPLEMENTARY INFORMATION: Tables, Figures and References Supplementary Table S1: Mammaliaform patellar status$ Inclusive clades Genus and Stratigraphic age of Patellar Comments# (partial) species (and taxon, and location(s) state reference(s) used for 0/1/2 patellar status) (absent/ ‘patelloid’/ present) Sinoconodonta Sinoconodon Jurassic, China 0 Patellar groove absent, suggests no rigneyi (Kielan- patella Jaworowska et al., 2004) Sinoconodon is included on our phylogeny within tritylodontids. Morganucodonta Megazostrodon Late Triassic, southern 0 rudnerae (Jenkins Africa & Parrington, 1976) Morganucodonta Eozostrodon sp. Late Triassic, Wales 0 Asymmetric patellar groove, (Jenkins et al., specimens disarticulated so it is hard 1976) to assess the patella but appears absent Docodonta Castorocauda 164 Mya, mid-Jurassic, 0 Semi-aquatic adaptations lutrasimilis (Ji et China al., 2006) Docodonta Agilodocodon 164 Mya, mid-Jurassic, 0 scansorius (Meng China et al., 2015) Docodonta Docofossor 160 Mya, China 0 brachydactylus (Luo et al., 2015b) Docodonta Haldanodon 150-155 Mya, Late 0 Shallow patellar groove exspectatus Jurassic, Portugal (Martin, 2005b) Australosphenida Asfaltomylos Mid-Jurassic, South ? Postcranial material absent patagonicus America (Martin, 2005a) Australosphenida Ornithorhynchus Extant 2 Platypus, genome sequenced Monotremata anatinus (Warren, Hillier, Marshall Graves et (Herzmark, 1938; al., 2008) Rowe, 1988) Australosphenida Tachyglossus
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history Main articles: History of the Earth and Geological his- chondrules,[1] are a key signature of a supernova ex- tory of Earth plosion. See also: Geologic time scale and Timeline of evolution- ary history of life • 4,567±3 Ma: Rapid collapse of hydrogen molecular For earlier events, see Timeline of the formation of the cloud, forming a third-generation Population I star, Universe. the Sun, in a region of the Galactic Habitable Zone This timeline of natural history summarizes signifi- (GHZ), about 25,000 light years from the center of the Milky Way Galaxy.[2] • 4,566±2 Ma: A protoplanetary disc (from which Earth eventually forms) emerges around the young Sun, which is in its T Tauri stage. • 4,560–4,550 Ma: Proto-Earth forms at the outer (cooler) edge of the habitable zone of the Solar Sys- tem. At this stage the solar constant of the Sun was only about 73% of its current value, but liquid wa- ter may have existed on the surface of the Proto- Earth, probably due to the greenhouse warming of high levels of methane and carbon dioxide present in the atmosphere. Early bombardment phase begins: because the solar neighbourhood is rife with large planetoids and debris, Earth experiences a number of giant impacts that help to increase its overall size. Visual representation of the history of life on Earth as a spiral 2 Hadean Eon cant geological and biological events from the formation of the Earth to the rise of modern humans. Times are listed in millions of years, or megaanni (Ma).
    [Show full text]
  • Mining-Induced Displacement and Resettlement in Colombia
    Mining-induced displacement and resettlement in Colombia Socio-economic and cultural consequences of resettlements of campesinos and indigenous people - The case of the Cerrejón open pit mine in La Guajira Masterarbeit vorgelegt von Benedikt Hora bei Univ. Prof. Dr. Martin Coy Universität Innsbruck August 2014 Masterarbeit Mining-induced displacement and resettlement in Colombia Socio-economic and cultural consequences of resettlements of campesinos and indigenous people – The case of the Cerrejón open pit mine in La Guajira Verfasser Benedikt Hora B.Sc. Angestrebter akademischer Grad Master of Science (M.Sc.) eingereicht bei Herrn Univ. Prof. Dr. Martin Coy Institut für Geographie Fakultät für Geo- und Atmosphärenwissenschaften an der Leopold-Franzens-Universität Innsbruck Eidesstattliche Erklärung Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebene Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich an den angegebenen Quellen entnommen wurde, sind als solche kenntlich gemacht. Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als Magister- /Master-/Diplomarbeit/Dissertation eingereicht. _______________________________ Innsbruck, August 2014 Unterschrift Contents CONTENTS Contents ................................................................................................................................................................................. 3 Preface
    [Show full text]