(Teleostei, Siluriformes, Doradidae) in Bolivia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Faculdade De Biociências
FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA ANÁLISE FILOGENÉTICA DE DORADIDAE (PISCES, SILURIFORMES) Maria Angeles Arce Hernández TESE DE DOUTORADO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Av. Ipiranga 6681 - Caixa Postal 1429 Fone: (51) 3320-3500 - Fax: (51) 3339-1564 90619-900 Porto Alegre - RS Brasil 2012 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA ANÁLISE FILOGENÉTICA DE DORADIDAE (PISCES, SILURIFORMES) Maria Angeles Arce Hernández Orientador: Dr. Roberto E. Reis TESE DE DOUTORADO PORTO ALEGRE - RS - BRASIL 2012 Aviso A presente tese é parte dos requisitos necessários para obtenção do título de Doutor em Zoologia, e como tal, não deve ser vista como uma publicação no senso do Código Internacional de Nomenclatura Zoológica, apesar de disponível publicamente sem restrições. Dessa forma, quaisquer informações inéditas, opiniões, hipóteses e conceitos novos apresentados aqui não estão disponíveis na literatura zoológica. Pessoas interessadas devem estar cientes de que referências públicas ao conteúdo deste estudo somente devem ser feitas com aprovação prévia do autor. Notice This thesis is presented as partial fulfillment of the dissertation requirement for the Ph.D. degree in Zoology and, as such, is not intended as a publication in the sense of the International Code of Zoological Nomenclature, although available without restrictions. Therefore, any new data, opinions, hypothesis and new concepts expressed hererin are not available -
Review of Fisheries Resource Use and Status in the Madeira River Basin (Brazil, Bolivia, and Peru) Before Hydroelectric Dam Completion
REVIEWS IN FISHERIES SCIENCE 2018, VOL. 0, NO. 0, 1–21 https://doi.org/10.1080/23308249.2018.1463511 Review of Fisheries Resource Use and Status in the Madeira River Basin (Brazil, Bolivia, and Peru) Before Hydroelectric Dam Completion Carolina R. C. Doria a,b, Fabrice Duponchelleb,c, Maria Alice L. Limaa, Aurea Garciab,d, Fernando M. Carvajal-Vallejosf, Claudia Coca Mendez e, Michael Fabiano Catarinog, Carlos Edwar de Carvalho Freitasc,g, Blanca Vegae, Guido Miranda-Chumaceroh, and Paul A. Van Dammee,i aLaboratory of Ichthyology and Fisheries – Department of Biology, Federal University of Rond^onia, Porto Velho, Brazil; bLaboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI – EDIA), Iquitos (Peru), Santa Cruz (Bolivia); cInstitut de Recherche pour le Developpement (IRD), UMR BOREA (IRD-207, MNHN, CNRS-7208, Sorbonne Universite, Universite Caen Normandie, Universite des Antilles), Montpellier, France; dIIAP, AQUAREC, Iquitos, Peru; eFAUNAGUA, Institute for Applied Research on Aquatic Resources, Sacaba- Cochabamba, Plurinational State of Bolivia; fAlcide d’Orbigny Natural History Museum, ECOSINTEGRALES SRL (Ecological Studies for Integral Development and Nature Conservation), Cochabamba, Plurinational State of Bolivia; gDepartment of Fisheries Science, Federal University of Amazonas, Manaus, Brazil; hWildlife Conservation Society, Greater Madidi Tambopata Landscape Conservation Program, La Paz, Bolivia; iUnit of Limnology and Aquatic Resources (ULTRA), University of San Simon, Cochabamba, Bolivia -
Structure of Tropical River Food Webs Revealed by Stable Isotope Ratios
OIKOS 96: 46–55, 2002 Structure of tropical river food webs revealed by stable isotope ratios David B. Jepsen and Kirk O. Winemiller Jepsen, D. B. and Winemiller, K. O. 2002. Structure of tropical river food webs revealed by stable isotope ratios. – Oikos 96: 46–55. Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relation- ships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish d15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. -
Phylogenetic Relationships of the South American Doradoidea (Ostariophysi: Siluriformes)
Neotropical Ichthyology, 12(3): 451-564, 2014 Copyright © 2014 Sociedade Brasileira de Ictiologia DOI: 10.1590/1982-0224-20120027 Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes) José L. O. Birindelli A phylogenetic analysis based on 311 morphological characters is presented for most species of the Doradidae, all genera of the Auchenipteridae, and representatives of 16 other catfish families. The hypothesis that was derived from the six most parsimonious trees support the monophyly of the South American Doradoidea (Doradidae plus Auchenipteridae), as well as the monophyly of the clade Doradoidea plus the African Mochokidae. In addition, the clade with Sisoroidea plus Aspredinidae was considered sister to Doradoidea plus Mochokidae. Within the Auchenipteridae, the results support the monophyly of the Centromochlinae and Auchenipterinae. The latter is composed of Tocantinsia, and four monophyletic units, two small with Asterophysus and Liosomadoras, and Pseudotatia and Pseudauchenipterus, respectively, and two large ones with the remaining genera. Within the Doradidae, parsimony analysis recovered Wertheimeria as sister to Kalyptodoras, composing a clade sister to all remaining doradids, which include Franciscodoras and two monophyletic groups: Astrodoradinae (plus Acanthodoras and Agamyxis) and Doradinae (new arrangement). Wertheimerinae, new subfamily, is described for Kalyptodoras and Wertheimeria. Doradinae is corroborated as monophyletic and composed of four groups, one including Centrochir and Platydoras, the other with the large-size species of doradids (except Oxydoras), another with Orinocodoras, Rhinodoras, and Rhynchodoras, and another with Oxydoras plus all the fimbriate-barbel doradids. Based on the results, the species of Opsodoras are included in Hemidoras; and Tenellus, new genus, is described to include Nemadoras trimaculatus, N. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Amazon Alive!
Amazon Alive! A decade of discovery 1999-2009 The Amazon is the planet’s largest rainforest and river basin. It supports countless thousands of species, as well as 30 million people. © Brent Stirton / Getty Images / WWF-UK © Brent Stirton / Getty Images The Amazon is the largest rainforest on Earth. It’s famed for its unrivalled biological diversity, with wildlife that includes jaguars, river dolphins, manatees, giant otters, capybaras, harpy eagles, anacondas and piranhas. The many unique habitats in this globally significant region conceal a wealth of hidden species, which scientists continue to discover at an incredible rate. Between 1999 and 2009, at least 1,200 new species of plants and vertebrates have been discovered in the Amazon biome (see page 6 for a map showing the extent of the region that this spans). The new species include 637 plants, 257 fish, 216 amphibians, 55 reptiles, 16 birds and 39 mammals. In addition, thousands of new invertebrate species have been uncovered. Owing to the sheer number of the latter, these are not covered in detail by this report. This report has tried to be comprehensive in its listing of new plants and vertebrates described from the Amazon biome in the last decade. But for the largest groups of life on Earth, such as invertebrates, such lists do not exist – so the number of new species presented here is no doubt an underestimate. Cover image: Ranitomeya benedicta, new poison frog species © Evan Twomey amazon alive! i a decade of discovery 1999-2009 1 Ahmed Djoghlaf, Executive Secretary, Foreword Convention on Biological Diversity The vital importance of the Amazon rainforest is very basic work on the natural history of the well known. -
Center for Systematic Biology & Evolution
CENTER FOR SYSTEMATIC BIOLOGY & EVOLUTION 2008 ACTIVITY REPORT BY THE NUMBERS Research Visitors ....................... 253 Student Visitors.......................... 230 Other Visitors.......................... 1,596 TOTAL....................... 2,079 Outgoing Loans.......................... 535 Specimens/Lots Loaned........... 6,851 Information Requests .............. 1,294 FIELD WORK Botany - Uruguay Diatoms – Russia (Commander Islands, Kamchatka, Magdan) Entomology – Arizona, Colorado, Florida, Hawaii, Lesotho, Minnesota, Mississippi, Mongolia, Namibia, New Jersey, New Mexico, Ohio, Pennsylvania, South Africa, Tennessee LMSE – Zambia Ornithology – Alaska, England Vertebrate Paleontology – Canada (Nunavut Territory), Pennsylvania PROPOSALS BOTANY . Digitization of Latin American, African and other type specimens of plants at the Academy of Natural Sciences of Philadelphia, Global Plants Initiative (GPI), Mellon Foundation Award. DIATOMS . Algal Research and Ecologival Synthesis for the USGS National Water Quality Assessment (NAWQA) Program Cooperative Agreement 3. Co-PI with Don Charles (Patrick Center for Environmental Research, Phycology). Collaborative Research on Ecosystem Monitoring in the Russian Northern Far-East, Trust for Mutual Understanding Grant. CSBE Activity Report - 2008 . Diatoms of the Northcentral Pennsylvania, Pennsylvania Department of Conservation and Natural Resources, Wild Rescue Conservation Grant. Renovation and Computerization of the Diatom Herbarium at the Academy of Natural Sciences of Philadelphia, National -
Platydoras Costatus (Raphael Catfish) Ecological Risk Screening Summary
Raphael Catfish (Platydoras costatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, July 2018 Web Version, 9/20/2019 Photo: Erling Holm, via FishWise Professional. Licensed under Creative Commons BY-NC-SA. Available: http://eol.org/data_objects/24181426. (July 2018). 1 Native Range and Status in the United States Native Range From Nico et al. (2018): “South America, from Venezuela and the Guianas to Argentina (Robins et al. 1991), including the Amazon, Tocantins, Parnaíba, Orinoco, and Essequibo River basins and coastal drainages in French Guiana and Suriname.” From Piorski et al. (2008): “[…] coastal drainages of Suriname and French Guiana […]” 1 From Eschmeyer et al. (2018): “Distribution: Amazon, Tocantins, Parnaíba, Orinoco and Essequibo River basins and coastal drainages in French Guiana and Suriname: Bolivia, Brazil, Ecuador, ?Colombia, French Guiana, Guyana, Peru, Suriname and Venezuela. But perhaps only coastal drainages of Suriname and French Guiana.” Conflicting descriptions of the distribution of P. costatus are apparent in the quotations above. In this ERSS, the broader definition is used because most information available refers to this definition of the species range. Status in the United States From Nico et al. (2018): “Reported from Florida and Texas. Likely failed introduction: there have been no additional specimens or reports since initial sightings.” Nico et al. (2018) report that the record from Florida dates to 1984 and the record from Texas dates to 1999. VertNet (2018) reports an occurrence in May 2002 in New Mexico: “Caught 15 May 2002 by Frank Jimenez of Tesuque […] at Santa Cruz Lake, Santa Fe Co. with a net as it was swimming near shoreline.” The frequency of this species in trade is unclear (see Remarks). -
Global Catfish Biodiversity 17
American Fisheries Society Symposium 77:15–37, 2011 © 2011 by the American Fisheries Society Global Catfi sh Biodiversity JONATHAN W. ARMBRUSTER* Department of Biological Sciences, Auburn University 331 Funchess, Auburn University, Alabama 36849, USA Abstract.—Catfi shes are a broadly distributed order of freshwater fi shes with 3,407 cur- rently valid species. In this paper, I review the different clades of catfi shes, all catfi sh fami- lies, and provide information on some of the more interesting aspects of catfi sh biology that express the great diversity that is present in the order. I also discuss the results of the widely successful All Catfi sh Species Inventory Project. Introduction proximately 10.8% of all fi shes and 5.5% of all ver- tebrates are catfi shes. Renowned herpetologist and ecologist Archie Carr’s But would every one be able to identify the 1941 parody of dichotomous keys, A Subjective Key loricariid catfi sh Pseudancistrus pectegenitor as a to the Fishes of Alachua County, Florida, begins catfi sh (Figure 2A)? It does not have scales, but it with “Any damn fool knows a catfi sh.” Carr is right does have bony plates. It is very fl at, and its mouth but only in part. Catfi shes (the Siluriformes) occur has long jaws but could not be called large. There is on every continent (even fossils are known from a barbel, but you might not recognize it as one as it Antarctica; Figure 1); and the order is extremely is just a small extension of the lip. There are spines well supported by numerous complex synapomor- at the front of the dorsal and pectoral fi ns, but they phies (shared, derived characteristics; Fink and are not sharp like in the typical catfi sh. -
Category Popular Name of the Group Phylum Class Invertebrate
Category Popular name of the group Phylum Class Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Reptile Chordata Reptilia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Mollusk Mollusca Bivalvia Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Mollusk Mollusca Bivalvia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate -
Regional Characteristics of the Hydrochemistry in the Humid Tropics of Bolivian Amazonia
Hydrology in the Humid Tropic Environment (Proceedings of a symposium held at Kingston, Jamaica, November 1996). IAHS Publ. no. 253, 1998. 447 Regional characteristics of the hydrochemistry in the humid tropics of Bolivian Amazonia JEAN LOUP GUYOT ORSTOM CP 09747, 70001-970 Brasilia DF, Brazil JORGE QUINTANILLA, JOHNNY MARTINEZ Insitiiuto de litvestigaciones Ouimicas, Universidad Mayor de San Andres, CP 303, La Paz, Bolivia HECTOR CALLE SENAMHI, CP 996, La Paz, Bolivia Abstract With an .area of 872 000 km2, the Bolivian Amazon basin corresponds to the upper part of the basin of the River Madera, the principal southern tributary of the Amazon which has a mean discharge of 17 000 nf s"1. The Madera River receives 40 X 106 t year'1 of dissolved material from its two principal tributaries (the Mamoré and the Beni) (1983- 1989 average). The basins of these rivers include very contrasting bio- geographical environments, from the glaciers of the eastern mountain chain of the Andes (6500 m a.m.s.l.), to the humid tropical rainforest of the Amazon plain (150 m a.m.s.l.). This work, based on the sampling of 395 rivers of the Amazonian basin of Bolivia, describes the major features of the regional distribution of the water chemistry (major elements of the dissolved phase) relative to the geology of the basin. Caracterizacion regional de la hidroquimica en el tropico humedo de la Amazonia de Bolivia Resumen Con una superficie de 872 000 km2, la cuenca amazônica de Bolivia corresponde a la parte alta de la cuenca del rio Madera, principal afluente meridional del Amazonas, que tiene una descarga media de 17 000 m3 s"1. -
Mark Henry Sabaj, Phd Interim Curator, Ichthyology
Mark Henry Sabaj, PhD Interim Curator, Ichthyology Education: BS, Biology, University of Richmond, Va., 1990 MS, Biology, University of Richmond, Va., 1992 PhD, Animal Biology, University of Illinois, Urbana- Champaign, 2002 Research Interests: Catfish family Doradidae (thorny catfishes Diversity and evolution of South American freshwater fishes Bio: Mark Henry Sabaj began his career in ichthyology as an undergraduate in 1989 when Drs. William S. Woolcott and Eugene G. Maurakis invited him to assist their field investigation and video documentation of spawning behaviors in nest-building chubs and dace in the streams of eastern North America. His masters’ thesis documented newly observed reproductive strategies in five species of minnows in the genera Exoglossum, Nocomis, Rhinichthys and Semotilus. In 1992 he became a doctoral student of Lawrence M. Page, and from 1995-2000 served as full- time collection manager of fishes at the Illinois Natural History Survey. In 2001 he relocated to Philadelphia to become collection manager of fishes at the Academy of Natural Sciences. Between 1991 and 2018, he published 58 peer-reviewed papers on topics that include spawning behaviors in minnows, darters and loricariids, and taxonomic descriptions of 33 new taxa including catfishes in the families Doradidae (16 species, 1 genus), Loricariidae (8 species), Akysidae (1 species) and Aspredinidae (1 species) as well as a river ray (Potamotrygon), threadfin (Polynemus, subspecies), dwarf cichlid (Apistogramma), two crayfish species (Orconectes) and a freshwater sponge (Drulia). Sabaj has field and collecting experience in freshwater ecosystems throughout the U.S. and on four continents including 40 expeditions to Argentina, Bolivia, Brazil, Canada, Colombia, Finland, Guyana, Mongolia, Peru, Suriname, Thailand, Uruguay, and Venezuela.