bioRxiv preprint first posted online Jul. 19, 2019; doi: http://dx.doi.org/10.1101/709014. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. H3K4me3 is neither instructive for, nor informed by, transcription. Struan C Murray1, Philipp Lorenz1, Françoise S Howe1, Meredith Wouters1, Thomas Brown1, Shidong Xi1, Harry Fischl1, Walaa Khushaim1, Joseph Regish Rayappu1, Andrew Angel1 & Jane Mellor1* 1Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. *Corresponding author. Tel: +44 1865 613241; E-mail:
[email protected] Key words histone modification; gene regulation; H3K4me3; chromatin; RNA polymerase Abstract H3K4me3 is a near-universal histone modification found predominantly at the 5’ region of genes, with a well-documented association with gene activity. H3K4me3 has been ascribed roles as both an instructor of gene expression and also a downstream consequence of expression, yet neither has been convincingly proven on a genome-wide scale. Here we test these relationships using a combination of bioinformatics, modelling and experimental data from budding yeast in which the levels of H3K4me3 have been massively ablated. We find that loss of H3K4me3 has no effect on the levels of nascent transcription or transcript in the population. Moreover, we observe no change in the rates of transcription initiation, elongation, mRNA export or turnover, or in protein levels, or cell-to-cell variation of mRNA. Loss of H3K4me3 also has no effect on the large changes in gene expression patterns that follow galactose induction.