Transforming the Energy System

Total Page:16

File Type:pdf, Size:1020Kb

Transforming the Energy System TRANSFORMING THE ENERGY SYSTEM – AND HOLDING THE LINE ON RISING GLOBAL TEMPERATURES n n KEY FINDINGS AND NUMBERS USD 95 trillion CURRENT PLANS USD 110 trillion +15 ENERGY TRANSFORMATION trillion USD more needed Fossil fuels - supply Electrification Fossil fuels - power Power grids and energy flexibility Nuclear Biofuels Energy e ciency Hydrogen Renewables - power Others Renewables - end-uses Fossil fuels - supply Fossil fuels - power Nuclear Energy e ciency Renewables – power +15 Renewables – end-uses 95 USD trillion 110 USD trillion more needed KEY NUMBERS USD trillion Electrification Power grids and energy flexibility Biofuels USD 95 trillion investmentsCURRENT PLANS in USD Hydrogen USD 110 trillion +15 trillion ENERGY TRANSFORMATION trillion USD +15 the sector bymore needed compared to Fossil fuels - supply Others Electrification 2050Fossil fuels - topower achievePower grids and energy flexibility Nuclear Biofuels Energy e ciency Hydrogen Renewables - power 110 Others CURRENT PLANS USD trillion ENERGYRenewables - end-uses TRANSFORMATION Fossil fuels - supply Fossil fuels - power Nuclear Energy e ciency Renewables – power 95 110 Renewables – end-uses USD trillion USD trillion Electrification Power grids and energy flexibility Biofuels Hydrogen Others Increased investment and changing energy mix Investment in Energy Efficiency: USD 37 trillion vs. USD 29 trillion Investment in Renewable USD Energy: 27 trillion vs. USD 12 trillion Power Changing trade, End uses Biofuels spending and investment patterns USD USD USD higher 22.5 trillion 2.5 trillion 2 trillion GDP vs. USD 12 trillion vs. USD 1 trillion vs. USD 1 trillion 2.5% more jobs* 7million * Estimated 0.15% higher economy-wide net employment in 2050 with ENERGY TRANSFORMATION compared to CURRENT PLANS KEY FINDINGS he Paris Agreement sets a goal of “[h]olding the Around the world today, national energy plans and T increase in the global average temperature to well Nationally Determined Contributions (NDCs) fall far below 2°C above pre-industrial levels and pursuing short of the emissions reductions needed. Currently, efforts to limit the temperature increase to 1.5°C the world may exhaust its “carbon budget” for energy- above pre-industrial levels” to significantly reduce related emissions until the end of the century in as the risks and impacts of climate change. The world few as ten years. To hold the line at 1.5°C, cumulative today has less than two decades to make serious energy-related carbon-dioxide (CO2) emissions must cuts in carbon emissions. If we fail, according to the be 400 gigatons (Gt) lower by 2050 than current Intergovernmental Panel on Climate Change (IPCC, policies and plans indicate. 2018), we may cross the tipping point into a future of The International Renewable Energy Agency (IRENA) 1 catastrophic climate change. has explored two broad future paths: Current Plans Ambitious investments in the energy sector – (meaning the course set by current and planned reshaping power generation, transport and other policies); and the path for a clean, climate-resilient energy uses on both the supply and demand sides Energy Transformation.2 Building such a low-carbon, – can provide many of the quick wins needed for climate-safe future can deliver a broad array of socio- a sustainable future. Renewable energy sources, economic benefits, IRENA’s analysis shows. But to coupled with steadily improving energy efficiency, make this happen, the pace and depth of investments offer the most practical and readily available solution in renewables must be accelerated without delay. within the timeframe set by the IPCC. By embarking Renewable energy technologies alone are not upon a comprehensive energy transformation today, enough to achieve massive decarbonisation. The we can start to create a better energy system – one future energy system encompasses three inter- capable of ensuring that average global temperatures related elements: one, renewable energy, would rely at the end of the century are no more than 1.5°C above on steady improvements to energy efficiency and pre-industrial levels. increased electrification of end-use sectors. The cost equation also matters, with affordable renewable power allowing faster, more viable displacement of conventional coal- and oil-burning systems. Renewables and energy efficiency, enhanced through electrification, can achieve over nine-tenths of the cuts needed in energy-related CO2 emissions 1 Paris Agreement, Art. 2(1)(a). 2 Global Energy Transformation: A Roadmap to 2050 (IRENA, 2019) analyses and compares these two investment and development pathways as far as mid-century. 3 Annual energy-related CO2 emissions and reductions, 2010–2050 Gt/yr 35 CURRENT PLANS 33 Gt in 2050 Buildings Electrification 30 of heat and Buildings transport w/RE: Renewable Transport 36% energy and 25 electrification District heat Transport 70% emission deliver 75% Renewable of emission reductions energy: 20 resulting reductions Power 39% District heat from the Energy 15 Transformation Energy Industry e ciency Power and others: 25% 10 ENERGY TRANSFORMATION 9.8 Gt in 2050 5 Industry 0 2010 2015 2020 2025 2030 2035 2040 2045 2050 Based on Global Energy Transformation: A Roadmap to 2050 (IRENA, 2019). Note: “Renewables” in the caption denotes deployment of renewable technologies in the power sector (wind, solar photovoltaic, etc.) and in direct end-use applications (solar thermal, geothermal, biomass). “Energy efficiency” denotes efficiency measures in industry, buildings and transport (e.g. improving insulation of buildings or installing more efficient appliances and equipment). “Electrification” denotes electrification of heat and transport applications, such as heat pumps and electric vehicles. Gt = gigaton; RE = renewable energy. Practical options for global energy decarbonisation IRENA has explored global energy development options Assessing the additional potential for scaling up or from two main perspectives: the course set by current optimising low-carbon technologies and approaches, and planned policies; and a cleaner, climate-resilient including renewable energy, energy efficiency and pathway based on more ambitious uptake of renewables electrification, while also considering the role of other and associated technologies. Throughout this report the technologies; first, or Current Plans, provides a comparative baseline Developing a realistic, practical Energy Transformation for a more ambitious Energy Transformation. scenario, referred to in other publications as the REmap Global Energy Transformation: A Roadmap to 2050 Case. This calls for considerably faster deployment (IRENA, 2019) analyses and compares these two of low-carbon technologies, based largely on investment and development pathways as far as mid- renewable energy and energy efficiency, resulting in a century. transformation in energy use to keep the rise in global The ongoing roadmap analysis, updated annually, temperatures this century as low as 1.5°C compared to involves several key steps: pre-industrial levels. The scenario focuses primarily on cutting energy-related carbon-dioxide (CO ) emissions, Identifying the Current Plans for global energy 2 which make up around two-thirds of global greenhouse development as a baseline scenario (or Reference Case) gas emissions; for comparing investment options worldwide as far as 2050. This presents a scenario based on governments’ Analysis of the cost, benefits and investment needs current energy plans and other planned targets and for low-carbon technologies worldwide to achieve the policies, including climate commitments made since envisaged energy transformation. 2015 in Nationally Determined Contributions under the For more on the global roadmap and its underlying Paris Agreement; analysis, see www.irena.org/remap. 4 Moreover, falling renewable power costs provide Renewables and associated infrastructure account for a crucial synergy with electric mobility and heat. nearly half of the difference, with energy efficiency Renewables-based heat and transport solutions alone and electrified transport and heat applications could provide two-thirds of the energy emissions cuts absorbing the rest: needed to meet agreed international climate goals. Investment to build up renewable power generation Modern, increasingly “smart” grid infrastructure capacity needs to be twice as high as currently allows unprecedented flexibility in energy production, foreseen, reaching USD 22.5 trillion by 2050. distribution and use. But investments are needed to Energy efficiency requires investments of USD 1.1 trillion make the most of these gains. per year, more than four times their present level. With solar and wind power on the rise, grid Investment patterns must change operators need new equipment to make the whole power system operate flexibly. Some of the solutions Despite the climate urgency, present investment are market-based, others require investment in patterns show a stark mismatch with the pathway to modern technology solutions. Quick-ramping hold the 1.5°C line. Investments in low-carbon energy thermal generation backups, pumped hydropower, solutions have stalled over the past three years. reinforced transmission and distribution grids, Government plans in place today call for investing digital control equipment, vastly expanded storage at least USD 95 trillion in energy systems over the capacity, and demand-side management through coming three decades. But those plans and related heat pumps, electric boilers and behind-the-meter investments are not always
Recommended publications
  • Net Zero by 2050 a Roadmap for the Global Energy Sector Net Zero by 2050
    Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 Interactive iea.li/nzeroadmap Net Zero by 2050 Data iea.li/nzedata INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the Ireland reliability, affordability Italy and sustainability of Japan energy in its Korea 30 member Luxembourg countries, Mexico 8 association Netherlands countries and New Zealand beyond. Norway Poland Portugal Slovak Republic Spain Sweden Please note that this publication is subject to Switzerland specific restrictions that limit Turkey its use and distribution. The United Kingdom terms and conditions are available online at United States www.iea.org/t&c/ This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword We are approaching a decisive moment for international efforts to tackle the climate crisis – a great challenge of our times.
    [Show full text]
  • Energy and Training Module ITU Competitive Coach
    37 energy and training module ITU Competitive Coach Produced by the International Triathlon Union, 2007 38 39 energy & training Have you ever wondered why some athletes shoot off the start line while others take a moment to react? Have you every experienced a “burning” sensation in your muscles on the bike? Have athletes ever claimed they could ‘keep going forever!’? All of these situations involve the use of energy in the body. Any activity the body performs requires work and work requires energy. A molecule called ATP (adenosine triphosphate) is the “energy currency” of the body. ATP powers most cellular processes that require energy including muscle contraction required for sport performance. Where does ATP come from and how is it used? ATP is produced by the breakdown of fuel molecules—carbohydrates, fats, and proteins. During physical activity, three different processes work to split ATP molecules, which release energy for muscles to use in contraction, force production, and ultimately sport performance. These processes, or “energy systems”, act as pathways for the production of energy in sport. The intensity and duration of physical activity determines which pathway acts as the dominant fuel source. Immediate energy system Fuel sources ATP Sport E.g. carbohydrates, energy performance proteins, fats “currency” Short term energy system E.g. swimming, cycling, running, transitions Long term energy system During what parts of a triathlon might athletes use powerful, short, bursts of speed? 1 2 What duration, intensity, and type of activities in a triathlon cause muscles to “burn”? When in a triathlon do athletes have to perform an action repeatedly for longer than 10 or 15 3 minutes at a moderate pace? 40 energy systems Long Term (Aerobic) System The long term system produces energy through aerobic (with oxygen) pathways.
    [Show full text]
  • Hydropower Special Market Report Analysis and Forecast to 2030 INTERNATIONAL ENERGY AGENCY
    Hydropower Special Market Report Analysis and forecast to 2030 INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, electricity markets, Canada Indonesia energy efficiency, Czech Republic Morocco access to energy, Denmark Singapore demand side Estonia South Africa management and Finland Thailand much more. Through France its work, the IEA Germany advocates policies that Greece will enhance the Hungary reliability, affordability Ireland and sustainability of Italy energy in its 30 member countries, Japan 8 association countries Korea and beyond. Luxembourg Mexico Netherlands New Zealand Norway Revised version, Poland July 2021. Information notice Portugal found at: www.iea.org/ Slovak Republic corrections Spain Sweden Switzerland Turkey United Kingdom Please note that this publication is subject to United States specific restrictions that limit its use and distribution. The The European terms and conditions are available online at Commission also www.iea.org/t&c/ participates in the work of the IEA This publication and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Hydropower Special Market Report Abstract Abstract The first ever IEA market report dedicated to hydropower highlights the economic and policy environment for hydropower development, addresses the challenges it faces, and offers recommendations to accelerate growth and maintain the existing infrastructure.
    [Show full text]
  • Chapter 1: Energy Challenges September 2015 1 Energy Challenges
    QUADRENNIAL TECHNOLOGY REVIEW AN ASSESSMENT OF ENERGY TECHNOLOGIES AND RESEARCH OPPORTUNITIES Chapter 1: Energy Challenges September 2015 1 Energy Challenges Energy is the Engine of the U.S. Economy Quadrennial Technology Review 1 1 Energy Challenges 1.1 Introduction The United States’ energy system, vast in size and increasingly complex, is the engine of the economy. The national energy enterprise has served us well, driving unprecedented economic growth and prosperity and supporting our national security. The U.S. energy system is entering a period of unprecedented change; new technologies, new requirements, and new vulnerabilities are transforming the system. The challenge is to transition to energy systems and technologies that simultaneously address the nation’s most fundamental needs—energy security, economic competitiveness, and environmental responsibility—while providing better energy services. Emerging advanced energy technologies can do much to address these challenges, but further improvements in cost and performance are important.1 Carefully targeted research, development, demonstration, and deployment (RDD&D) are essential to achieving these improvements and enabling us to meet our nation’s energy objectives. This report, the 2015 Quadrennial Technology Review (QTR 2015), examines science and technology RDD&D opportunities across the entire U.S. energy system. It focuses primarily on technologies with commercialization potential in the mid-term and beyond. It frames various tradeoffs that all energy technologies must balance, across such dimensions as diversity and security of supply, cost, environmental impacts, reliability, land use, and materials use. Finally, it provides data and analysis on RDD&D pathways to assist decision makers as they set priorities, subject to budget constraints, to develop more secure, affordable, and sustainable energy services.
    [Show full text]
  • Hector's Posts – Volume 5, 1St Edition Editor's Note Messages
    Hector's Posts – Volume 5, 1st Edition Editor's Note This document contains the postings from mostly one individual, Hector Perez Torres, collected at the yahoo site: http://groups.yahoo.com/group/evgray/. Within are message numbers from 20,000 to 24,999, the rest left to subsequent volumes. Messages #20091 Re: Videos - Longitudinal and Transverse --- I will sum it to a single solution.... "Impedance Matching" RV proves the point quite well with an RV fed from a single wire at a distance , a Air capacitor "plate" is used at ends to complete the "dipole" the single wire signal is lomgitudinal in nature.... Can it be understood ? Hector #20105 Re: Videos - Longitudinal and Transverse Answer within lines (and this are important ones to add to compilations so read carefully ) Hector --- In [email protected], "Dan Combine" <dancombine@...> wrote: > There are 2 kinds of impedance matching: > > 1. complex impedance matching > (R-load = R-line) and Ampere load & Voltage load & density load & vaccum load within a set of many posible vectoring in LC networks from narrowbanded low impedance to broadbanded hi impedanced spectrum . > > This is also called reflectionless or broadband matching, and is the most commonly used in the 'modern' world. (usualy hi impedance) > It is to avoid reflection back into the transmission line or source. In RF the ternm is to avoid reflected power (SWR) matching 1:1 Both > the load and source must be resistive, so Z-load = Z-line = Z- source. not nesesarily as source as well as load can be virstualy superconductive at resonant states , MRA papers gives a hint to that Were is the resistance at 0 point ? if voltage is maximal and current is 0 resistance is 0 As well if current is maximal and voltage is 0 resistance again is virtualy o ..
    [Show full text]
  • The Radio Amateurs Microwave Communications Handbook.Pdf
    1594 THE RADIO AMATEUR'S COM ' · CA 10 S HANDBOOK DAVE INGRAM, K4TWJ THE RADIO AMATEUR'S - MICROWAVE COMMUNICATIONS · HANDBOOK DAVE INGRAM, K4TWJ ITABI TAB BOOKS Inc. Blue Ridge Summit, PA 17214 Other TAB Books by the Author No. 1120 OSCAR: The Ham Radio Satellites No. 1258 Electronics Projects for Hams, SWLs, CSers & Radio Ex­ perimenters No. 1259 Secrets of Ham Radio DXing No. 1474 Video Electronics Technology FIRST EDITION FIRST PRINTING Copyright © 1985 by TAB BOOKS Inc. Printed in the United States of America Reproduction or publication of the content in any manner, without express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein. Library of Congress Cataloging in Publication Data Ingram, Dave. The radio amateur's microwave communications handbook. Includes index. 1. Microwave communication systems-Amateurs' manuals. I. Title. TK9957.154 1985 621.38'0413 85-22184 ISBN 0-8306-0194-5 ISBN 0-8306-0594-0 (pbk.) Contents Acknowledgments v Introduction vi 1 The Amateur 's Microwave Spectrum 1 The Early Days and Gear for Microwaves- The Microwave Spectrum- Microwavesand EME-Microwavesand the Am- ateur Satellite Program 2 Microwave Electronic Theory 17 Electronic Techniques for hf/vhf Ranges- Electronic Tech- niques for Microwaves-Klystron Operation-Magnetron Operation-Gunn Diode Theory 3 Popular Microwave Bands 29 Circuit and Antennas for the 13-cm Band-Designs for 13-cm Equipment 4 Communications Equipment for 1.2 GHz 42 23-cm Band Plan-Available Equipment- 23-cm OX 5
    [Show full text]
  • The Entropocene
    THE ENTROPOCENE Jeff Robbins Rutgers University 101 Murray Hall, New Brunswick, NJ 08901, USA ABSTRACT According to Eric Schneider and the late James Kay “nature abhors a gradient” as it seeks to degrade any and all differences that can make a difference. They also claim that life self-organized by creating a meta-order out of disordered orders, evolving as an increasingly efficient, effective, sustainable (order from order) means for degrading the huge sun to earth temperature gradient. They inject purpose into the scheme by claiming that life represents “order emerging from disorder in the service of more disorder.” Or, as Jeffrey Wicken succinctly put it in “Evolution and Thermodynamics: The New Paradigm,” “Organisms are remote-from-equilibrium systems that maintain their organizational structures by irreversibly degrading free energy through informed kinetic pathways acquired through evolution. Dissipation through structuring is the strategy of life.” In other words, life came about as an evolving means for giving the Second Law of Thermodynamics what it wants. Entropy. In my 2015 ISSS paper, “Anthropocene as Life’s State of the Art in Disorder Production: A Sustainability Conundrum,” I proposed that our species collectively is disorder producer summa cum laude. We are the most efficient, most effective, degrader of gradients, producer of entropy yet evolved. Calling our epoch, “the Anthropocene” doesn’t capture our essence. Our epoch is the Entropocene. We have turned the bio-geosphere from an accumulator of solar exergy (“free energy”, the measure of energy’s utility) as in fossil fuels, into a trapper of entropy a.k.a., global warming.
    [Show full text]
  • System-Of-Systems Approach for Integrated Energy Systems
    A System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation Preprint Saurabh Mittal, Mark Ruth, Annabelle Pratt, Monte Lunacek, Dheepak Krishnamurthy, and Wesley Jones National Renewable Energy Laboratory Presented at the Society for Modeling & Simulation International Summer Simulation Multi-Conference Chicago, Illinois July 26–29, 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Conference Paper NREL/CP-2C00-64045 August 2015 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Transforming Buildings Through Integrated Energy Systems
    Transforming Buildings Through Integrated Energy Systems A Novel Approach to Integration As modern society becomes increasingly dependent on electricity, the implications are more apparent during grid disruptions―such as extreme weather events or cascading power failures that can leave homes and businesses without power for weeks at a time. Moreover, at least 1.3 billion people worldwide have no access to electricity at all; for a billion more, access is unreliable. Distributed energy generation from solar arrays holds promise to help address these challenges, especially given the falling cost of photovoltaic (PV) technologies. Integrated energy systems enable buildings to use and However, rapid deployment of distributed power is store energy from available resources (such as solar beginning to create new challenges for centralized grid energy) efficiently. systems that must now be addressed. A cross-disciplinary research team at Oak Ridge implement an integrated energy system control to National Laboratory (ORNL) is tackling the challenge of optimally manage the building load, distributed providing reliable, resilient, and responsible energy use generation, and required energy storage; and in buildings through an integrated approach to electricity generation, distribution, and consumption. enable use-inspired research to understand the science needed to make transformative When successful, this research will enable breakthroughs in energy storage. cost effective, sustainable integration of The expertise of members of this research effort spans distributed and renewable energy sources into various areas including materials science, building building systems and technologies, vehicle research, advanced manufacturing, cost-optimal development, design, and power systems, optimization, sensors and controls, and Contact management of integrated energy systems (load, microgrid research.
    [Show full text]
  • Hydropower Vision Chapter 2
    Chapter 2: State of Hydropower in the United States Hydropower A New Chapter for America’s Renewable Electricity Source STATE OF HYDROPOWER 2 in the United States Photo from 65681751. Illustration by Joshua Bauer/NREL 70 2 Overview OVERVIEW Hydropower is the primary source of renewable energy generation in the United States, delivering 48% of total renewable electricity sector generation in 2015, and roughly 62% of total cumulative renewable generation over the past decade (2006-2015) [1]. The approximately 101 gigawatts1 (GW) of hydropower capacity installed as of 2014 included ~79.6 GW from hydropower gener ation2 facilities and ~21.6 GW from pumped storage hydro- power3 facilities [2]. Reliable generation and grid support services from hydropower help meet the nation’s require- ments for the electrical bulk power system, and hydro- power pro vides a long-term, renewable source of energy that is essentially free of hazardous waste and is low in carbon emissions. Hydropower also supports national energy security, as its fuel supply is largely domestic. % 48 HYDROPOWER PUMPED CAPACITY STORAGE OF TOTAL CAPACITY RENEWABLE GENERATION Hydropower is the largest renewable energy resource in the United States and has been an esta blished, reliable contributor to the nation’s supply of elec­ tricity for more than 100 years. In the early 20th century, the environmental conse- quences of hydropower were not well characterized, in part because national priorities were focused on economic development and national defense. By the latter half of the 20th century, however, there was greater awareness of the environmental impacts of dams, reservoirs, and hydropower operations.
    [Show full text]
  • 2019 California Energy Efficiency Action Plan
    California Energy Commission FINAL STAFF REPORT 2019 California Energy Efficiency Action Plan 2019 California Energy Efficiency Action Plan Gavin Newsom, Governor November 2019 | CEC-400-2019-010-SF California Energy Commission David Hochschild Chair Janea A. Scott Vice Chair Karen Douglas, J.D. J. Andrew McAllister, Ph.D. Patty Monahan Commissioners Michael Kenney Heather Bird Heriberto Rosales Primary Authors Michael Kenney Project Manager Jennifer Nelson Office Manager EXISTING BUILDINGS OFFICE Michael J. Sokol Deputy Director EFFICIENCY DIVISION Drew Bohan Executive Director DISCLAIMER Staff members of the California Energy Commission prepared this report. As such, it does not necessarily represent the views of the Energy Commission, its employees, or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Energy Commission nor has the Commission passed upon the accuracy or adequacy of the information in this report. ACKNOWLEDGEMENTS Martha Brook Glen Baird Antonio Cano Charles Belk Bryan Early California Department of Community Services and Development Aida Escala Carolyn Cook Anne Fisher California Department of Food and Fritz Foo Agriculture Nicholas Janusch Rachel Ballanti Erik Jensen Eliana Camargo Daniel
    [Show full text]
  • Guide for Conducting Energy Efficiency Potential Studies
    Guide for Conducting Energy Effi ciency Potential Studies A RESOURCE OF THE NATIONAL ACTION PLAN FOR ENERGY EFFICIENCY NOVEMBER 2007 About This Document This Guide for Conducting Energy Effi ciency Potential Studies is provided to assist state offi cials, regulators, legislators, and others in the implementation of the recommendations of the National Action Plan for Energy Effi ciency (Action Plan) and the pursuit of its longer-term goals. This Guide identifi es three main applications for energy effi ciency potential studies and provides examples of each, along with a de­ scription of how key decisions regarding scope and methodology are made to best achieve the studies’ objectives. It also provides an overview of the main analytical steps in conducting a potential study and introduces several related concepts. The primary intended audience for this Guide is policy-makers, state offi cials, utility staff, and effi ciency advocates looking for guidance on the process of conducting potential studies. These individuals can also use the Guide to review the results of already- completed studies. Guide for Conducting Energy Effi ciency Potential Studies A RESOURCE OF THE NATIONAL ACTION PLAN FOR ENERGY EFFICIENCY NOVEMBER 2007 The Guide for Conducting Energy Effi ciency Potential Studies is a product of the National Action Plan for Energy Effi ­ ciency Leadership Group and does not refl ect the views, policies, or otherwise of the federal government. The role of the U.S. Department of Energy and U.S. Environmental Protection Agency is limited to facilitation of the Action Plan. This document was fi nal as of December 2007 and incorporates minor modifi cations to the original release.
    [Show full text]