GSA Welcomes 2012 Board Members
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1999 Annual Report
1999 1999 BANBURY CENTER DIRECTOR'S REPORT The Banbury Center program continues to be as eclectic and exciting as ever. The year was filled with more meetings than ever before-a record 23 of them! Laboratory scientists used the Center for seven in-house meetings, and local community groups came here on eight occasions. Together with the five neurobiology courses, there was hardly a week when the Center was not in use. Not surprisingly, 1999 was also a record year for the number of visitors to Banbury Center: 667 par ticipants attended the 23 meetings. The demographics of our participants remain much the same: 25% of visitors to Banbury Center came from abroad, with the United Kingdom, Germany, and Canada lead ing the way. Of the American scientists, those from New York, Massachusetts, and California together accounted for more than 32% of the total. However, participants were drawn from no fewer than 42 states. This is the first year that we have been able to use the Meier House to accommodate participants, which proved to be wonderful. Now the number of participants that we can house on the Banbury estate matches the number we can have in the Conference Room-we do not have to transport peo ple between the Center and the main campus. Biological and biomedical research is becoming ever more interdisciplinary, and as it does so, it also becomes ever more difficult to categorize the topics of Banbury Center meetings. A meeting may deal with the same phenomenon in a range of organisms, or many different strategies may be used to study one phenomenon in a single species. -
Medical Advisory Board September 1, 2006–August 31, 2007
hoWard hughes medical iNstitute 2007 annual report What’s Next h o W ard hughes medical i 4000 oNes Bridge road chevy chase, marylaNd 20815-6789 www.hhmi.org N stitute 2007 a nn ual report What’s Next Letter from the president 2 The primary purpose and objective of the conversation: wiLLiam r. Lummis 6 Howard Hughes Medical Institute shall be the promotion of human knowledge within the CREDITS thiNkiNg field of the basic sciences (principally the field of like medical research and education) and the a scieNtist 8 effective application thereof for the benefit of mankind. Page 1 Page 25 Page 43 Page 50 seeiNg Illustration by Riccardo Vecchio Südhof: Paul Fetters; Fuchs: Janelia Farm lab: © Photography Neurotoxin (Brunger & Chapman): Page 3 Matthew Septimus; SCNT images: by Brad Feinknopf; First level of Rongsheng Jin and Axel Brunger; iN Bruce Weller Blake Porch and Chris Vargas/HHMI lab building: © Photography by Shadlen: Paul Fetters; Mouse Page 6 Page 26 Brad Feinknopf (Tsai): Li-Huei Tsai; Zoghbi: Agapito NeW Illustration by Riccardo Vecchio Arabidopsis: Laboratory of Joanne Page 44 Sanchez/Baylor College 14 Page 8 Chory; Chory: Courtesy of Salk Janelia Farm guest housing: © Jeff Page 51 Ways Illustration by Riccardo Vecchio Institute Goldberg/Esto; Dudman: Matthew Szostak: Mark Wilson; Evans: Fred Page 10 Page 27 Septimus; Lee: Oliver Wien; Greaves/PR Newswire, © HHMI; Mello: Erika Larsen; Hannon: Zack Rosenthal: Paul Fetters; Students: Leonardo: Paul Fetters; Riddiford: Steitz: Harold Shapiro; Lefkowitz: capacity Seckler/AP, © HHMI; Lowe: Zack Paul Fetters; Map: Reprinted by Paul Fetters; Truman: Paul Fetters Stewart Waller/PR Newswire, Seckler/AP, © HHMI permission from Macmillan Page 46 © HHMI for Page 12 Publishers, Ltd.: Nature vol. -
Pomona College Magazine Fall/Winter 2020: the New (Ab
INSIDE:THE NEW COLLEGE MAGAZINE (AB)NORMAL • The Economy • Childcare • City Life • Dating • Education • Movies • Elections Fall-Winter 2020 • Etiquette • Food • Housing •Religion • Sports • Tourism • Transportation • Work & more Nobel Laureate Jennifer Doudna ’85 HOMEPAGE Together in Cyberspace With the College closed for the fall semester and all instruction temporarily online, Pomona faculty have relied on a range of technologies to teach their classes and build community among their students. At top left, Chemistry Professor Jane Liu conducts a Zoom class in Biochemistry from her office in Seaver North. At bottom left, Theatre Professor Giovanni Molina Ortega accompanies students in his Musical Theatre class from a piano in Seaver Theatre. At far right, German Professor Hans Rindesbacher puts a group of beginning German students through their paces from his office in Mason Hall. —Photos by Jeff Hing STRAY THOUGHTS COLLEGE MAGAZINE Pomona Jennifer Doudna ’85 FALL/WINTER 2020 • VOLUME 56, NO. 3 2020 Nobel Prize in Chemistry The New Abnormal EDITOR/DESIGNER Mark Wood ([email protected]) e’re shaped by the crises of our times—especially those that happen when ASSISTANT EDITOR The Prize Wwe’re young. Looking back on my parents’ lives with the relative wisdom of Robyn Norwood ([email protected]) Jennifer Doudna ’85 shares the 2020 age, I can see the currents that carried them, turning them into the people I knew. Nobel Prize in Chemistry for her work with They were both children of the Great Depression, and the marks of that experi- BOOK EDITOR the CRISPR-Cas9 molecular scissors. Sneha Abraham ([email protected]) ence were stamped into their psyches in ways that seem obvious to me now. -
Korunes Duke 0066D 14983.Pdf
How Linkage Disequilibrium and Recombination Shape Genetic Variation Within and Between Species by Katharine L Korunes University Program in Genetics and Genomics Duke University Date:_______________________ Approved: ___________________________ Mohamed Noor, Supervisor ___________________________ Mark Rausher, Chair ___________________________ Paul Magwene ___________________________ John Willis ___________________________ Jeff Sekelsky Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2019 ABSTRACT How Linkage Disequilibrium and Recombination Shape Genetic Variation Within and Between Species by Katharine L Korunes University Program in Genetics and Genomics Duke University Date:_______________________ Approved: ___________________________ Mohamed Noor, Supervisor ___________________________ Mark Rausher, Chair ___________________________ Paul Magwene ___________________________ John Willis ___________________________ Jeff Sekelsky An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2019 Copyright by Katharine L Korunes 2019 Abstract Meiotic recombination creates genetic diversity by shuffling combinations of alleles across loci, yet alleles at neighboring loci often remain non-randomly associated. This non-random association is -
IST Annual Report 2019
Annual Report 2019 IST Austria administrative and The people of IST Austria technical support staff by nationality Austria 59.4% Nationalities on campus Germany 5.6% Hungary 3.1% Poland 2.5% Romania 2.5% Scientists as well as administrative and technical support staff come Italy 2.1% Russia 1.7% from all over the world to conduct and back research at IST Austria. Czech Republic 1.4% As of December 31, 2019, a total of 72 nationalities were represented India 1.4% Slovakia 1.4% on campus. Spain 1.4% UK 1.4% Other 16.1% North America Europe Asia Canada Albania Italy Afghanistan Cuba Andorra Latvia Bangladesh El Salvador Armenia Lithuania China Mexico Austria Luxembourg South Korea USA Belarus Macedonia India Belgium Malta Iran Bosnia and Netherlands Israel Herzegovina Norway Japan Bulgaria Poland Jordan Croatia Portugal Kazakhstan Cyprus Romania Lebanon Czech Republic Serbia Mongolia Denmark Slovakia Philippines Finland Slovenia Russia France Spain Singapore Georgia Sweden Syria Germany Switzerland Vietnam Greece Turkey Hungary UK Ireland Ukraine Africa Egypt Kenya IST Austria scientists by nationality Libya Austria 14.7% Nigeria Germany 10.9% South America Italy 7.4% Argentina India 5.9% Russia 4.7% Brazil Slovakia 4.1% Chile China 4.1% Colombia Hungary 3.7% Peru Spain 3.3% Uruguay USA 3.1% Czech Republic 2.9% UK 2.4% Oceania Other 32.8% Australia Content 2 HAPPY BIRTHDAY! 40 RESEARCH 4 Foreword by the president 42 Biology 5 Board member voices 44 Computer science 6 “An Austrian miracle” 46 Mathematics A year of celebration 48 Neuroscience -
Duke University Dissertation Template
Life History Tradeoffs and Genetic Variation for Social Behaviors in a Wild Primate Population by Emily McLean University Program in Genetics and Genomics Duke University Date:_______________________ Approved: ___________________________ Susan Alberts, Supervisor ___________________________ Mark Rausher, Chair ___________________________ Mohamed Noor ___________________________ Jenny Tung ___________________________ Elizabeth Archie Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics of Duke University 2018 ABSTRACT Life History Tradeoffs and Genetic Variation for Social Behaviors in a Wild Primate Population by Emily McLean University Program in Genetics and Genomics Duke University Date:_______________________ Approved: ___________________________ Susan Alberts, Supervisor ___________________________ Mark Rausher, Chair ___________________________ Mohamed Noor ___________________________ Jenny Tung ___________________________ Elizabeth Archie An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2018 Copyright by Emily McLean 2018 Abstract Understanding the genetic and environmental forces that contribute to phenotypic variation is a major goal of evolutionary biology. However, social living blurs the distinction between genes and environments because the social environment is (at least in part) determined by the genes of its members. Therefore, the genes that influence an individual’s phenotype are not limited to his own genes (direct genetic effects) but potentially include the genes of individuals in his social context (indirect genetic effects). Indirect genetic effects are thought to be of particular importance in the evolution of social behavior. Social living is a common phenotype in many animal taxa and is especially well-developed in non-human primates and humans. -
Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja
Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja To cite this version: Roger Butlin, Carole Smadja. Coupling, Reinforcement, and Speciation. American Naturalist, Uni- versity of Chicago Press, 2018, 191 (2), pp.155-172. 10.1086/695136. hal-01945350 HAL Id: hal-01945350 https://hal.archives-ouvertes.fr/hal-01945350 Submitted on 5 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License vol. 191, no. 2 the american naturalist february 2018 Synthesis Coupling, Reinforcement, and Speciation Roger K. Butlin1,2,* and Carole M. Smadja1,3 1. Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa; 2. Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom; and Department of Marine Sciences, University of Gothenburg, Tjärnö SE-45296 Strömstad, Sweden; 3. Institut des Sciences de l’Evolution, Unité Mixte de Recherche 5554 (Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement–École pratique des hautes études), Université de Montpellier, 34095 Montpellier, France Submitted March 15, 2017; Accepted August 28, 2017; Electronically published December 15, 2017 abstract: During the process of speciation, populations may di- Introduction verge for traits and at their underlying loci that contribute barriers Understanding how reproductive isolation evolves is key fl to gene ow. -
Humankind 2.0: the Technologies of the Future 6. Biotech
Humankind 2.0: The Technologies of the Future 6. Biotech Piero Scaruffi, 2017 See http://www.scaruffi.com/singular/human20.html for the full text of this discussion A brief History of Biotech 1953: Discovery of the structure of the DNA 2 A brief History of Biotech 1969: Jon Beckwith isolates a gene 1973: Stanley Cohen and Herbert Boyer create the first recombinant DNA organism 1974: Waclaw Szybalski coins the term "synthetic biology” 1975: Paul Berg organizes the Asilomar conference on recombinant DNA 3 A brief History of Biotech 1976: Genentech is founded 1977: Fred Sanger invents a method for rapid DNA sequencing and publishes the first full DNA genome of a living being Janet Rossant creates a chimera combining two mice species 1980: Genentech’s IPO, first biotech IPO 4 A brief History of Biotech 1982: The first biotech drug, Humulin, is approved for sale (Eli Lilly + Genentech) 1983: Kary Mullis invents the polymerase chain reaction (PCR) for copying genes 1986: Leroy Hood invents a way to automate gene sequencing 1986: Mario Capecchi performs gene editing on a mouse 1990: William French Anderson’s gene therapy 1990: First baby born via PGD (Alan Handyside’s lab) 5 A brief History of Biotech 1994: FlavrSavr Tomato 1994: Maria Jasin’s homing endonucleases for genome editing 1996: Srinivasan Chandrasegaran’s ZFN method for genome editing 1996: Ian Wilmut clones the first mammal, the sheep Dolly 1997: Dennis Lo detects fetal DNA in the mother’s blood 2000: George Davey Smith introduces Mendelian randomization 6 A brief History of Biotech -
David Botstein 2015 Book.Pdf
Princeton University HONORS FACULTY MEMBERS RECEIVING EMERITUS STATUS May 2015 The biographical sketches were written by colleagues in the departments of those honored. Copyright © 2015 by The Trustees of Princeton University 550275 Contents Faculty Members Receiving Emeritus Status 2015 Steven L. Bernasek .......................3 David Botstein...........................6 Erhan Çinlar ............................8 Caryl Emerson.......................... 11 Christodoulos A. Floudas ................. 15 James L. Gould ......................... 17 Edward John Groth III ...................20 Philip John Holmes ......................23 Paul R. Krugman .......................27 Bede Liu .............................. 31 Alan Eugene Mann ......................33 Joyce Carol Oates .......................36 Clarence Ernest Schutt ...................39 Lee Merrill Silver .......................41 Thomas James Trussell ...................43 Sigurd Wagner .........................46 { 1 } { 2 } David Botstein avid Botstein was educated at Harvard (A.B. 1963) and the D University of Michigan (Ph.D. 1967). He joined the faculty of the Massachusetts Institute of Technology, rising through the ranks from instructor to professor of genetics. In 1987, he moved to Genentech, Inc. as vice president–science, and, in 1990, he joined Stanford University’s School of Medicine, where he was chairman of the Department of Genetics. In July, 2003 he became director of the Lewis-Sigler Institute for Integrative Genomics and the Anthony B. Evnin ’62 Professor of Genomics at Princeton University. David’s research has centered on genetics, especially the use of genetic methods to understand biological functions. His early work in bacterial genetics contributed to the discovery of transposable elements in bacteria and an understanding of their physical structures and genetic properties. In the early 1970s, he turned to budding yeast (Saccharomyces cerevisiae) and devised novel genetic methods to study the functions of the actin and tubulin cytoskeletons. -
MOHAMED NOOR Earl D
MOHAMED NOOR Earl D. McLean Professor and Chair, Department of Biology BIOGRAPHY Mohamed Noor wants to answer one of the greatest unsolved questions in biology: How constant evolutionary change produces the discontinuous groups known as species. As technology improves Dr. Noor’s work gets closer to the answer. Recently, his research team used fruit fly species to understand the causes and evolutionary [ Faculty Fellow through December 2017 ] consequences of variation in rates of genetic recombination. Now, his team is working to determine the genetic features and evolutionary EDUCATION processes that allow hybridizing species to persist. From reframing foundational principles of biology to applying modern approaches like Cornell University, Section of Genetics and whole-genome sequencing, Noor explores a wide range of scientific Development, Post-doc, 1996-98 topics to figure out what makes organisms similar and at the same University of Chicago, Ecology and Evolution, time unique. Ph.D., 1996 College of William and Mary, Biology, B.S., 1992 Dr. Noor’s innovative techniques are not limited to his research. He has developed a popular online course, “Introduction to Genetics and Evolution,” and uses the ‘flipped classroom” technique to deliver TOPICS traditional lecture material online so that his class can discuss the material the next day. This allows Noor to interact with his 400 students and to address specific topics during his precious class time. Genetics and evolution In 2012, Dr. Noor was the recipient of the ADUTA award for teaching Molecular evolution excellence, a student-nominated and selected award, given by the Evolution by natural selection Duke Alumni Association. -
The David H. Koch Institute for Integrative Cancer Research at MIT
The David H. Koch Institute for Integrative Cancer Research at MIT The David H. Koch Institute for Integrative Cancer Research was announced on October 9, 2007. By combining the faculty of the (now former) MIT Center for Cancer Research (CCR) with an equivalent number of distinguished engineers drawn from various MIT departments, the Koch Institute will continue CCR’s tradition of scientific excellence while also seeking to directly promote innovative ways to diagnose, monitor, and treat cancer through advanced technology. Among the engineering faculty there will be remarkable diversity, as the Electrical Engineering and Computer Science, Materials Science and Engineering, Biological Engineering, Chemical Engineering, and Mechanical Engineering departments will be represented in the Koch Institute. For three decades, CCR has been a mainstay of MIT’s—and the nation’s—efforts to conquer cancer. Its faculty has included five Nobel Prize winners, and the wealth of fundamental discoveries that have emerged under its aegis have helped shape the face of molecular biology. Under the banner of the Koch Institute, the future promises to hold even more astounding advances. Within the Koch Institute we will not directly provide clinical care for cancer patients but discoveries made by Koch Institute scientists and engineers will have a broad impact on how the disease is detected and managed. Applying our great strengths in science and technology, and working closely with our clinical collaborators, Koch Institute researchers will be tireless in unraveling the complexities of this disease and bringing new discoveries—and new hope—to patients. The Koch Institute includes more than 40 laboratories and more than 500 researchers located at our headquarters and across the MIT campus. -
King Release Final 11.21.19
Mary-Claire King, PhD, Joins the New York Genome Center as Senior Associate Core Member NEW YORK, NY (November 25, 2019) – The New York Genome Center (NYGC) announced today that internationally renowned Geneticist Mary-Claire KinG, PhD, has joined the NYGC faculty on a consultinG basis as Senior Associate Core Member. Dr. King will provide scientific leadership in the Genetics of neuropsychiatric disease. “We are deliGhted that Mary-Claire KinG is joininG the Center to support our efforts to understand the Genetic basis of psychiatric disorders. Dr. KinG’s exceptional vision and pioneerinG leadership in Genetics will advance our collaborative, inter-institutional Genetic and Genomic research in neuropsychiatric diseases,” said Tom Maniatis, PhD, Evnin Family Scientific Director and Chief Executive Officer of the NYGC. Dr. KinG is the American Cancer Society Professor in the Departments of Genome Sciences and Medicine at the University of WashinGton in Seattle. She was the first to show that breast and ovarian cancer is inherited in some families as the result of mutations in the Gene that she named BRCA1. This discovery has transformed the diagnosis, druG development and treatment of this inherited form of breast cancer. More recently, Dr. KinG has focused on the Genetics of schizophrenia, contributinG to the understandinG of complex disease inheritance. In 2014, Dr. King received the Lasker Special Achievement Award for Medical Research and in 2016, the United States National Medal of Science. Dr. KinG is also recoGnized as a pioneer in the development of DNA sequencinG for human riGhts investiGations. “I am excited to join the Center at this transformative time in its evolution,” said Dr.