Clim. Past, 8, 1717–1736, 2012 www.clim-past.net/8/1717/2012/ Climate doi:10.5194/cp-8-1717-2012 of the Past © Author(s) 2012. CC Attribution 3.0 License. A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP D. J. Lunt1, T. Dunkley Jones2,*, M. Heinemann3, M. Huber4, A. LeGrande5, A. Winguth6, C. Loptson1, J. Marotzke7, C. D. Roberts8, J. Tindall9, P. Valdes1, and C. Winguth6 1School of Geographical Sciences, University of Bristol, UK 2Department of Earth Science and Engineering, Imperial College London, UK 3International Pacific Research Center, University of Hawaii, USA 4Department of Earth and Atmospheric Sciences, Purdue University, USA 5NASA/Goddard Institute for Space Studies, USA 6Department of Earth and Environmental Science, University of Texas at Arlington, USA 7Max Planck Institute for Meteorology, Hamburg, Germany 8The Met Office, Exeter, UK 9School of Earth and Environment, University of Leeds, UK *now at: School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK Correspondence to: D. J. Lunt (
[email protected]) Received: 29 March 2012 – Published in Clim. Past Discuss.: 16 April 2012 Revised: 19 September 2012 – Accepted: 20 September 2012 – Published: 29 October 2012 Abstract. The early Eocene (∼ 55 to 50 Ma) is a time pe- of atmospheric CO2 and temperature during this time pe- riod which has been explored in a large number of mod- riod will allow a quantitative assessment of the skill of the elling and data studies. Here, using an ensemble of previ- models at simulating warm climates. If it is the case that a ously published model results, making up “EoMIP” – the model which gives a good simulation of the Eocene will also Eocene Modelling Intercomparison Project – and synthe- give a good simulation of the future, then such an assessment ses of early Eocene terrestrial and sea surface temperature could be used to produce metrics for weighting future cli- data, we present a self-consistent inter-model and model– mate predictions.