Elliptic Functions and Transcendence Michel Waldschmidt To cite this version: Michel Waldschmidt. Elliptic Functions and Transcendence. Surveys in Number Theory, Springer Verlag, pp.143-188, 2008, Developments in Mathematics 17. hal-00407231 HAL Id: hal-00407231 https://hal.archives-ouvertes.fr/hal-00407231 Submitted on 24 Jul 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 7 Elliptic Functions and Transcendence Michel Waldschmidt Universit´e P. et M. Curie (Paris VI), Institut de Math´ematiques de Jussieu, UMR 7586 CNRS, Probl`emes Diophantiens, Case 247, 175, rue du Chevaleret F-75013 Paris, France
[email protected]; http://www.math.jussieu.fr/∼miw/ Summary. Transcendental numbers form a fascinating subject: so little is known about the nature of analytic constants that more research is needed in this area. Even when one is π interested only in numbers like π and e that are related to the classical exponential func- tion, it turns out that elliptic functions are required (so far, this should not last forever!) to prove transcendence results and get a better understanding of the situation. First we briefly recall some of the basic transcendence results related to the exponential function (Section 1).