The Geometry, Algebra and Analysis of Algebraic Numbers
The Geometry, Algebra and Analysis of Algebraic Numbers Francesco Amoroso (Caen), Igor Pritsker (Oklahoma State), Christopher Smyth (Edinburgh), Jeffrey Vaaler (UT Austin) Oct 4 - Oct 9, 2015 The participants gathered in Banff on 4 October 2015, smiled upon mild, sunny weather, with clear skies giving almost uninterrupted views of the spectacular surrounding mountains. They came to the workshop from a variety of mathematical backgrounds: most were number-theorists of various kinds: algebraic, transcendental, analytic, computational, . The common thread among them was, of course, an interest in algebraic numbers. 1 Overview of the Field and Recent Developments Algebraic numbers are fundamentally arithmetic objects, a property coming from the integer coefficients of their minimal polynomials. However, their study can involve the deployment of a surprisingly diverse arsenal of mathematical techniques. As well as classical algebra (fields, Galois theory, . ), these include analytic methods [2, 32], algebraic number theory [17, 19], combinatorial methods [29], methods from algebraic and toric geometry [5], potential theory [33, 35], dynamical systems [21, 41]. Classical geometric methods are used, for instance, for studying the position of algebraic numbers in the complex plane [9]. Connections with von Neumann algebras have been revealed, leading to formulations of natural non-commutative analogues of some classical questions about algebraic numbers. Algebraic numbers coming from restricted classes arise naturally in the study of hyperbolic manifolds. Mahler measure and heights. The workshop capitalized on recent progress and stimulated further devel- opment in this area, where the central problem is the 80-year old Lehmer conjecture [26, 42], on the smallest Mahler measure of a nonzero noncyclotomic algebraic integer.
[Show full text]